Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Squalene and its potential clinical uses.

Squalene, an isoprenoid compound structurally similar to beta-carotene, is an intermediate metabolite in the synthesis of cholesterol. In humans, about 60 percent of dietary squalene is absorbed. It is transported in serum generally in association with very low density lipoproteins and is distributed ubiquitously in human tissues, with the greatest concentration in the skin, where it is one of the major components of skin surface lipids. Squalene is not very susceptible to peroxidation and appears to function in the skin as a quencher of singlet oxygen, protecting human skin surface from lipid peroxidation due to exposure to UV and other sources of ionizing radiation. Supplementation of squalene to mice has resulted in marked increases in cellular and non-specific immune functions in a dose-dependent manner. Squalene may also act as a "sink" for highly lipophilic xenobiotics. Since it is a nonpolar substance, it has a higher affinity for un-ionized drugs. In animals, supplementation of the diet with squalene can reduce cholesterol and triglyceride levels. In humans, squalene might be a useful addition to potentiate the effects of some cholesterol-lowering drugs. The primary therapeutic use of squalene currently is as an adjunctive therapy in a variety of cancers. Although epidemiological, experimental and animal evidence suggests anti-cancer properties, to date no human trials have been conducted to verify the role this nutrient might have in cancer therapy regimens.

Pubmed ID: 9988781 RIS Download

Mesh terms: Animals | Antioxidants | Cholesterol | Drug Synergism | Humans | Molecular Structure | Neoplasms | Squalene | Xenobiotics