Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Target neuron specification of short-term synaptic facilitation and depression in the cricket CNS.

Journal of neurobiology | Dec 19, 1998

We investigated the role of retrograde signals in the regulation of short-term synaptic depression and facilitation by characterizing the form of plasticity expressed at novel synapses on four giant interneurons in the cricket cercal sensory system. We induced the formation of novel synapses by transplanting a mesothoracic leg and its associated sensory neurons to the cricket terminal abdominal segment. Axons of ectopic leg sensory neurons regenerated and innervated the host terminal abdominal ganglion forming monosynaptic connections with the medial giant interneuron (MGI), lateral giant interneuron (LGI), and interneurons 7-1a and 9-2a. The plasticity expressed by these synapses was characterized by stimulating a sensory neuron with pairs of stimuli at various frequencies or with trains of 10 stimuli delivered at 100 Hz and measuring the change in excitatory postsynaptic potential amplitude recorded in the postsynaptic neuron. Novel synapses of a leg tactile hair on 7-1a depressed, as did control synapses of cercal sensory neurons on this interneuron. Novel synapses of leg campaniform sensilla (CS) sensory neurons on MGI, like MGI's control synapses, always facilitated. The form of plasticity expressed by novel synapses is thus consistent with that observed at control synapses. Leg CS synapses with 9-2a also facilitated; however, the plasticity expressed by these sensory neurons is dependent on the identity of the postsynaptic cell since the synapses these same sensory neurons formed with LGI always depressed. We conclude that the form of plasticity expressed at these synaptic connections is determined retrogradely by the postsynaptic cell.

Pubmed ID: 9858269 RIS Download

Mesh terms: Abdomen | Animals | Central Nervous System | Excitatory Postsynaptic Potentials | Extremities | Female | Ganglia, Invertebrate | Gryllidae | Interneurons | Mechanoreceptors | Nerve Regeneration | Neural Inhibition | Neuronal Plasticity | Neurons, Afferent | Synapses | Synaptic Transmission | Transplantation, Heterotopic

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.