We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes.

Progression to destructive insulitis in nonobese diabetic (NOD) mice is linked to the failure of regulatory cells, possibly involving T helper type 2 (Th2) cells. Natural killer (NK) T cells might be involved in diabetes, given their deficiency in NOD mice and the prevention of diabetes by adoptive transfer of alpha/beta double-negative thymocytes. Here, we evaluated the role of NK T cells in diabetes by using transgenic NOD mice expressing the T cell antigen receptor (TCR) alpha chain Valpha14-Jalpha281 characteristic of NK T cells. Precise identification of NK1.1(+) T cells was based on out-cross with congenic NK1.1 NOD mice. All six transgenic lines showed, to various degrees, elevated numbers of NK1.1(+) T cells, enhanced production of interleukin (IL)-4, and increased levels of serum immunoglobulin E. Only the transgenic lines with the largest numbers of NK T cells and the most vigorous burst of IL-4 production were protected from diabetes. Transfer and cotransfer experiments with transgenic splenocytes demonstrated that Valpha14-Jalpha281 transgenic NOD mice, although protected from overt diabetes, developed a diabetogenic T cell repertoire, and that NK T cells actively inhibited the pathogenic action of T cells. These results indicate that the number of NK T cells strongly influences the development of diabetes.

Pubmed ID: 9815260 RIS Download

Mesh terms: Animals | Antigens, CD | Cytokines | Diabetes Mellitus | Disease Models, Animal | Female | Immunoglobulin E | Interleukin-4 | Killer Cells, Natural | Male | Mice | Mice, Inbred NOD | Mice, Transgenic | Receptors, Antigen, T-Cell | Spleen | T-Lymphocyte Subsets | Th2 Cells

Research resources used in this publication

None found

Research tools detected in this publication

Data used in this publication

None found

Associated grants


Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.

Jackson Laboratory

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.


View all literature mentions