• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin.

The N-methyl-D-aspartate receptor (NMDA-R) and brain spectrin, a protein that links membrane proteins to the actin cytoskeleton, are major components of post-synaptic densities (PSDs). Since the activity of the NMDA-R channel is dependent on the integrity of actin and leads to calpain-mediated spectrin breakdown, we have investigated whether the actin-binding spectrin may interact directly with NMDA-Rs. Spectrin is reported here to interact selectively in vitro with the C-terminal cytoplasmic domains of the NR1a, NR2A and NR2B subunits of the NMDA-R but not with that of the AMPA receptor GluR1. Spectrin binds at NR2B sites distinct from those of alpha-actinin-2 and members of the PSD95/SAP90 family. The spectrin-NR2B interactions are antagonized by Ca2+ and fyn-mediated NR2B phosphorylation, but not by Ca2+/calmodulin (CaM) or by Ca2+/CaM-dependent protein kinase II-mediated NR2B phosphorylation. The spectrin-NR1 interactions are unaffected by Ca2+ but inhibited by CaM and by protein kinase A- and C-mediated phosphorylations of NR1. Finally, in rat synaptosomes, both spectrin and NR2B are loosened from membranes upon addition of physiological concentrations of calcium ions. The highly regulated linkage of the NMDA-R to spectrin may underlie the morphological changes that occur in neuronal dendrites concurrently with synaptic activity and plasticity.

Pubmed ID: 9670010


  • Wechsler A
  • Teichberg VI


The EMBO journal

Publication Data

July 15, 1998

Associated Grants


Mesh Terms

  • Animals
  • Binding Sites
  • Brain Chemistry
  • Calcium
  • Calmodulin
  • Cattle
  • Detergents
  • Octoxynol
  • Phosphorylation
  • Rats
  • Rats, Inbred Lew
  • Receptors, AMPA
  • Receptors, N-Methyl-D-Aspartate
  • Recombinant Fusion Proteins
  • Spectrin
  • Synaptosomes