• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis.

Phosphorylation of Bcl-2 protein is a post-translational modification of unclear functional consequences. We studied the correlation between Bcl-2 phosphorylation, mitotic arrest, and apoptosis induced by the anti-tubulin agent paclitaxel. Continuous exposure of human cervical carcinoma HeLa cells to 50 ng/ml paclitaxel resulted in mitotic arrest with a symmetrical bell-shaped curve over time. The number of mitotic cells was highest at 24 h (82%), then declined as arrested cells progressed into apoptosis, and barely no mitotic cells were present at 48-60 h. The time curves of paclitaxel-induced cyclin B1 accumulation and stimulation of Cdc2/cyclin B1 kinase activity were identical and superimposable to that of M phase arrest. In contrast, apoptosis was first detected at 12 h and steadily increased thereafter until the termination of the experiments at 48-60 h, when about 80-96% of cells were apoptotic. Bcl-2 phosphorylation was closely associated in time with M phase arrest, accumulation of cyclin B1, and activation of Cdc2/cyclin B1 kinase, but not with apoptosis. At 24 h, when about 82% of the cells were in mitosis, almost all Bcl-2 protein was phosphorylated, whereas at 48 h, when 70-90% of the cells were apoptotic, all Bcl-2 protein was unphosphorylated. Similar results were obtained with SKOV3 cells, indicating that the association of paclitaxel-induced M phase arrest and Bcl-2 phosphorylation is not restricted to HeLa cells. We used short exposure to nocodazole and double thymidine to synchronize HeLa cells and investigate the association of Bcl-2 phosphorylation with mitosis. These studies demonstrated that Bcl-2 phosphorylation occurs in tight association with the number of mitotic cells in experimental conditions that do not lead to apoptosis. However, a continuous exposure to nocodazole resulted in a pattern of Bcl-2 phosphorylation, M phase arrest, and apoptosis similar to that observed with paclitaxel. The phosphatase inhibitor okadaic acid was found to inhibit the dephosphorylation of phosphorylated Bcl-2 and to delay the progression of nocodazole M phase-arrested cells into interphase. In contrast, the serine/threonine kinase inhibitor staurosporine, but not the tyrosine kinase inhibitor genistein, led to rapid dephosphorylation of phosphorylated Bcl-2 and accelerated the progression of nocodazole M phase-arrested cells into interphase. Immune complex kinase assays in cell-free systems demonstrated that Bcl-2 protein can be a substrate of Cdc2/cyclin B1 kinase isolated from paclitaxel-treated cells arrested in M phase. Taken together, these studies suggest that Bcl-2 phosphorylation is tightly associated with mitotic arrest and fail to demonstrate that it is a determinant of progression into apoptosis after mitotic arrest induced by anti-tubulin agents.

Pubmed ID: 9668078


  • Ling YH
  • Tornos C
  • Perez-Soler R


The Journal of biological chemistry

Publication Data

July 24, 1998

Associated Grants

  • Agency: NCI NIH HHS, Id: CA50270

Mesh Terms

  • Antineoplastic Agents
  • Apoptosis
  • CDC28 Protein Kinase, S cerevisiae
  • Cyclin B
  • Cyclin B1
  • Enzyme Activation
  • Enzyme Inhibitors
  • Female
  • Genistein
  • HeLa Cells
  • Humans
  • Mitosis
  • Nocodazole
  • Okadaic Acid
  • Paclitaxel
  • Phosphoric Monoester Hydrolases
  • Phosphorylation
  • Protein Kinase Inhibitors
  • Proto-Oncogene Proteins c-bcl-2
  • Staurosporine
  • Tumor Cells, Cultured