Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Functional conservation of the transportin nuclear import pathway in divergent organisms.

Human transportin1 (hTRN1) is the nuclear import receptor for a group of pre-mRNA/mRNA-binding proteins (heterogeneous nuclear ribonucleoproteins [hnRNP]) represented by hnRNP A1, which shuttle continuously between the nucleus and the cytoplasm. hTRN1 interacts with the M9 region of hnRNP A1, a 38-amino-acid domain rich in Gly, Ser, and Asn, and mediates the nuclear import of M9-bearing proteins in vitro. Saccharomyces cerevisiae transportin (yTRN; also known as YBR017c or Kap104p) has been identified and cloned. To understanding the nuclear import mediated by yTRN, we searched with a yeast two-hybrid system for proteins that interact with it. In an exhaustive screen of the S. cerevisiae genome, the most frequently selected open reading frame was the nuclear mRNA-binding protein, Nab2p. We delineated a ca.-50-amino-acid region in Nab2p, termed NAB35, which specifically binds yTRN and is similar to the M9 motif. NAB35 also interacts with hTRN1 and functions as a nuclear localization signal in mammalian cells. Interestingly, yTRN can also mediate the import of NAB35-bearing proteins into mammalian nuclei in vitro. We also report on additional substrates for TRN as well as sequences of Drosophila melanogaster, Xenopus laevis, and Schizosaccharomyces pombe TRNs. Together, these findings demonstrate that both the M9 signal and the nuclear import machinery utilized by the transportin pathway are conserved in evolution.

Pubmed ID: 9632798 RIS Download

Mesh terms: Amino Acid Sequence | Animals | Biological Transport | COS Cells | Cell Nucleus | Conserved Sequence | Drosophila melanogaster | Fungal Proteins | Heterogeneous-Nuclear Ribonucleoprotein Group A-B | Heterogeneous-Nuclear Ribonucleoproteins | Humans | Karyopherins | Molecular Sequence Data | Nuclear Localization Signals | Nuclear Proteins | Nucleocytoplasmic Transport Proteins | RNA-Binding Proteins | Receptors, Cytoplasmic and Nuclear | Recombinant Fusion Proteins | Ribonucleoproteins | Saccharomyces cerevisiae | Saccharomyces cerevisiae Proteins | Schizosaccharomyces | Sequence Homology, Amino Acid | Xenopus laevis

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants


Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.