Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Differential association of syntrophin pairs with the dystrophin complex.

The Journal of cell biology | 1997

The syntrophins are a multigene family of intracellular dystrophin-associated proteins comprising three isoforms, alpha1, beta1, and beta2. Based on their domain organization and association with neuronal nitric oxide synthase, syntrophins are thought to function as modular adapters that recruit signaling proteins to the membrane via association with the dystrophin complex. Using sequences derived from a new mouse beta1-syntrophin cDNA, and previously isolated cDNAs for alpha1- and beta2-syntrophins, we prepared isoform-specific antibodies to study the expression, skeletal muscle localization, and dystrophin family association of all three syntrophins. Most tissues express multiple syntrophin isoforms. In mouse gastrocnemius skeletal muscle, alpha1- and beta1-syntrophin are concentrated at the neuromuscular junction but are also present on the extrasynaptic sarcolemma. beta1-syntrophin is restricted to fast-twitch muscle fibers, the first fibers to degenerate in Duchenne muscular dystrophy. beta2-syntrophin is largely restricted to the neuromuscular junction. The sarcolemmal distribution of alpha1- and beta1-syntrophins suggests association with dystrophin and dystrobrevin, whereas all three syntrophins could potentially associate with utrophin at the neuromuscular junction. Utrophin complexes immunoisolated from skeletal muscle are highly enriched in beta1- and beta2-syntrophins, while dystrophin complexes contain mostly alpha1- and beta1-syntrophins. Dystrobrevin complexes contain dystrophin and alpha1- and beta1-syntrophins. From these results, we propose a model in which a dystrophin-dystrobrevin complex is associated with two syntrophins. Since individual syntrophins do not have intrinsic binding specificity for dystrophin, dystrobrevin, or utrophin, the observed preferential pairing of syntrophins must depend on extrinsic regulatory mechanisms.

Pubmed ID: 9214383 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: NS33145

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions