Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Identification of a novel, putative Rho-specific GDP/GTP exchange factor and a RhoA-binding protein: control of neuronal morphology.

The small GTP-binding protein Rho has been implicated in the control of neuronal morphology. In N1E-115 neuronal cells, the Rho-inactivating C3 toxin stimulates neurite outgrowth and prevents actomyosin-based neurite retraction and cell rounding induced by lysophosphatidic acid (LPA), sphingosine-1-phosphate, or thrombin acting on their cognate G protein-coupled receptors. We have identified a novel putative GDP/GTP exchange factor, RhoGEF (190 kD), that interacts with both wild-type and activated RhoA, but not with Rac or Cdc42. RhoGEF, like activated RhoA, mimics receptor stimulation in inducing cell rounding and in preventing neurite outgrowth. Furthermore, we have identified a 116-kD protein, p116(Rip), that interacts with both the GDP- and GTP-bound forms of RhoA in N1E-115 cells. Overexpression of p116(Rip) stimulates cell flattening and neurite outgrowth in a similar way to dominant-negative RhoA and C3 toxin. Cells overexpressing p116(Rip) fail to change their shape in response to LPA, as is observed after Rho inactivation. Our results indicate that (a) RhoGEF may link G protein-coupled receptors to RhoA activation and ensuing neurite retraction and cell rounding; and (b) p116(Rip) inhibits RhoA-stimulated contractility and promotes neurite outgrowth.

Pubmed ID: 9199174 RIS Download

Mesh terms: Amino Acid Sequence | Animals | Base Sequence | COS Cells | Cloning, Molecular | GTP-Binding Proteins | Guanine Nucleotide Exchange Factors | Guanosine Diphosphate | Guanosine Triphosphate | Molecular Sequence Data | Nerve Tissue Proteins | Neurons | Protein Binding | Proteins | Sequence Analysis | rho GTP-Binding Proteins

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NIH genetic sequence database that provides an annotated collection of all publicly available DNA sequences for almost 280 000 formally described species. (Jan 2014) These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. It is part of the International Nucleotide Sequence Database Collaboration and daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP.


View all literature mentions