• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

A comparison of selected mRNA and protein abundances in human liver.

In order to obtain an estimate of the overall level of correlation between mRNA and protein abundances for a well-characterized pharmaceutically relevant biological system, we have analyzed human liver by quantitative two-dimensional electrophoresis (for protein abundances) and by Transcript Image methodology (for mRNA abundances). Incyte's LifeSeq database was searched for expressed sequence tag (EST) sequences corresponding to a series of 23 proteins identified on 2-D maps in the Large Scale Biology (LSB) Molecular Anatomy database, resulting in estimated abundances for 19 messages (4 were undetected) among 7926 liver clones sequenced. A correlation coefficient of 0.48 was obtained between the mRNA and protein abundances determined by the two approaches, suggesting that post-transcriptional regulation of gene expression is a frequent phenomenon in higher organisms. A comparison with published data (Kawamoto, S., et al., Gene 1996, 174, 151-158) on the abundances of liver mRNAs for plasma proteins (secreted by the liver) suggests that higher abundance messages are strongly enriched in secreted sequences. Our data confirms this: of the 50 most abundant liver mRNAs, 29 coded for secreted proteins, while none of the 50 most abundant proteins appeared to be secreted products (although four plasma and red blood cell proteins were present in this group as contaminants from tissue blood).

Pubmed ID: 9150937

Authors

  • Anderson L
  • Seilhamer J

Journal

Electrophoresis

Publication Data

July 28, 1997

Associated Grants

None

Mesh Terms

  • DNA, Complementary
  • Databases, Factual
  • Electrophoresis, Gel, Two-Dimensional
  • Gene Expression
  • Humans
  • Liver
  • Proteins
  • RNA, Messenger