Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Amyloid precursor proteins protect neurons of transgenic mice against acute and chronic excitotoxic injuries in vivo.

Neuroscience | 1997

The beta-amyloid protein precursor (APP) is well conserved across different species and may fulfill important physiological functions within the CNS. While high-level neuronal expression of amyloidogenic forms of human APP results in beta-amyloid production and neurodegeneration, lower levels of neuronal human APP expression in neurons of transgenic mice may primarily accentuate physiological functions of this molecule. To assess the neuroprotective potential of human APP in vivo, mice from seven distinct transgenic lines expressing different human APP isoforms from the neuron-specific enolase promoter were challenged with systemic kainate injections (n=30) or transgene-mediated glial expression of gp120 (n=32), an HIV-1 protein capable of inducing excitotoxic neuronal damage. To quantitate human APP-mediated neuroprotection. the area of neuropil occupied by presynaptic terminals and neuronal dendrites in the neocortex and hippocampus of each mouse was determined using laser scanning confocal microscopy of double-immunolabelled brain sections and computer-aided image analysis. Compared with gp120 singly transgenic controls, mice from three of three human APP751gp120 bigenic lines expressing the 751 amino acid form of human APP at low levels showed significant protection against degeneration of presynaptic terminals; two of these lines also showed significantly less damage to neuronal dendrites. Two of three human APP695/gp120 bigenic lines expressing human APP695 at low levels were protected against presynaptic and dendritic damage, whereas one low expressor line and a human APP695/gp120 bigenic line expressing human APP695 at higher levels showed no significant protection. In the corresponding human APP singly transgenic lines, overexpressing only specific human APP isoforms, significant protection against kainate-induced degeneration of presynaptic terminals and neuronal dendrites was found in two of three human APP751 lines and not in any of the four human APP695 lines tested. These results indicate that human APP can protect neurons against chronic and acute excitotoxic insults in vivo and that human APP isoforms differ in their neuroprotective potential, at least with respect to specific forms of neural injury. It is therefore possible that impairments of neuroprotective human APP functions or aberrant shifts in human APP isoform ratios could contribute to neurodegeneration.

Pubmed ID: 9135095 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIA NIH HHS, United States
    Id: AG05131
  • Agency: NIA NIH HHS, United States
    Id: AG11385
  • Agency: NINDS NIH HHS, United States
    Id: NS34602

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GenBank (tool)

RRID:SCR_002760

NIH genetic sequence database that provides annotated collection of all publicly available DNA sequences for almost 280 000 formally described species (Jan 2014) .These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. It is part of International Nucleotide Sequence Database Collaboration and daily data exchange with European Nucleotide Archive (ENA) and DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through NCBI Entrez retrieval system, which integrates data from major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of GenBank database are available by FTP.

View all literature mentions