Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genomic organization of the mouse dystrobrevin gene: comparative analysis with the dystrophin gene.

Genomics | Feb 1, 1997

Dystrobrevin, the mammalian orthologue of the Torpedo 87-kDa postsynaptic protein, is a member of the dystrophin gene family with homology to the cysteine-rich carboxy-terminal domain of dystrophin. Torpedo dystrobrevin copurifies with the acetylcholine receptors and is thought to form a complex with dystrophin and syntrophin. This complex is also found at the sarcolemma in vertebrates and defines the cytoplasmic component of the dystrophin-associated protein complex. Previously we have cloned several dystrobrevin isoforms from mouse brain and muscle. Here we show that these transcripts are the products of a single gene located on proximal mouse chromosome 18. To investigate the diversity of dystrobrevin transcripts we have determined that the mouse dystrobrevin gene is organized into 24 coding exons that span between 130 and 170 kb at the genomic level. The gene encodes at least three distinct protein isoforms that are expressed in a tissue-specific manner. Interestingly, although there is only 27% amino acid identity between the homologous regions of dystrobrevin and dystrophin, the positions of 8 of the 15 exon-intron junctions are identical.

Pubmed ID: 9119373 RIS Download

Mesh terms: Alternative Splicing | Amino Acid Sequence | Animals | Chromosome Mapping | Dystrophin | Dystrophin-Associated Proteins | Exons | Introns | Mice | Molecular Sequence Data | Neuropeptides | RNA, Messenger | Restriction Mapping