We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder.

BACKGROUND: Anatomic magnetic resonance imaging (MRI) studies of attention-deficit hyperactivity disorder (ADHD) have been limited by small samples or measurement of single brain regions. Since the neuropsychological deficits in ADHD implicate a network linking basal ganglia and frontal regions, 12 subcortical and cortical regions and their symmetries were measured to determine if these structures best distinguished ADHD. METHODS: Anatomic brain MRIs for 57 boys with ADHD and 55 healthy matched controls, aged 5 to 18 years, were obtained using a 1.5-T scanner with contiguous 2-mm sections. Volumetric measures of the cerebrum, caudate nucleus, putamen, globus pallidus, amygdala, hippocampus, temporal lobe, cerebellum; a measure of prefrontal cortex; and related right-left asymmetries were examined along with midsagittal area measures of the cerebellum and corpus callosum. Interrater reliabilities were .82 or greater for all MRI measures. RESULTS: Subjects with ADHD had a 4.7% smaller total cerebral volume (P = .02). Analysis of covariance for total cerebral volume demonstrated a significant loss of normal right > left asymmetry in the caudate (P = .006), smaller right globus pallidus (P = .005), smaller right anterior frontal region (P = .02), smaller cerebellum (P = .05), and reversal of normal lateral ventricular asymmetry (P = .03) in the ADHD group. The normal age-related decrease in caudate volume was not seen, and increases in lateral ventricular volumes were significantly diminished in ADHD. CONCLUSION: This first comprehensive morphometric analysis is consistent with hypothesized dysfunction of right-sided prefrontal-striatal systems in ADHD.

Pubmed ID: 8660127 RIS Download

Mesh terms: Adolescent | Age Factors | Attention Deficit Disorder with Hyperactivity | Basal Ganglia | Body Height | Body Weight | Brain | Caudate Nucleus | Cerebellum | Cerebral Ventricles | Child | Child, Preschool | Discriminant Analysis | Frontal Lobe | Functional Laterality | Globus Pallidus | Humans | Intelligence Tests | Magnetic Resonance Imaging | Male | Prefrontal Cortex