Our hosting provider is investigating network issues. We apologize for the inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Coupling of the c-Cbl protooncogene product to ErbB-1/EGF-receptor but not to other ErbB proteins.

Oncogene | Mar 7, 1996

The ErbB family of transmembrane tyrosine kinases includes the receptor for EGF (ErbB-1), two receptors for NDF/heregulin (ErbB-3 and ErbB-4) and an orphan receptor (ErbB-2). In order to examine the possibility that distinct signal transduction pathways are coupled to each ErbB protein, we examined the interaction of individual ligand-stimulated receptors with the c-Cbl protein, a protooncogene-encoded signaling molecule previously identified in hematopoietic cells. We report that c-Cbl undergoes rapid and sustained phosphorylation on tyrosine residues upon stimulation of fibroblast and epithelial cell lines with ligands of ErbB-1. By contrast, activation of either ErbB-3 or ErbB-4 by NDF did not affect tyrosine phosphorylation of c-Cbl. Likewise, activation of a chimeric ligand-stimulatable ErbB-2 by a heterologous ligand was ineffective. Despite rapidity of the EGF effect, we observed no association of c-Cbl with activated ErbB-1, implying that the interaction is indirect. Our in vitro experiments suggest that a candidate mediator of the interaction is the Grb-2/Ash adaptor protein, which is constitutively bound to c-Cbl. These results indicate that different ErbB proteins can couple to distinct signaling pathways, and therefore their physiological functions are probably non-redundant.

Pubmed ID: 8649804 RIS Download

Mesh terms: Animals | CHO Cells | Cricetinae | Humans | Ligands | Phosphorylation | Proto-Oncogene Proteins | Proto-Oncogene Proteins c-cbl | Rats | Receptor, Epidermal Growth Factor | Receptor, ErbB-3 | Receptor, ErbB-4 | Signal Transduction | Ubiquitin-Protein Ligases