We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia.

Nature genetics | Apr 3, 1996

Fanconi anaemia (FA) is an autosomal recessive disease characterized by bone marrow failure, variable congenital malformations and predisposition to malignancies. Cells derived from FA patients show elevated levels of chromosomal breakage and an increased sensitivity to bifunctional alkylating agents such as mitomycin C (MMC) and diepoxybutane (DEB). Five complementation groups have been identified by somatic cell methods, and we have cloned the gene defective in group C (FAC)(7). To understand the in vivo role of this gene, we have disrupted murine Fac and generated mice homozygous for the targeted allele. The -/- mice did not exhibit developmental abnormalities nor haematologic defects up to 9 months of age. However, their spleen cells had dramatically increased numbers of chromosomal aberrations in response to MMC and DEB. Homozygous male and female mice also had compromised gametogenesis, leading to markedly impaired fertility, a characteristic of FA patients. Thus, inactivation of Fac replicates some of the features of the human disease.

Pubmed ID: 8630504 RIS Download

Mesh terms: Animals | Cloning, Molecular | Fanconi Anemia | Female | Gene Targeting | Genes, Recessive | Genetic Vectors | Homozygote | Infertility | Male | Mice | Mutation | Ovary | Testis

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, Id: HL52138

Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.