• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Properties of synaptic transmission from photoreceptors to bipolar cells in the mudpuppy retina.

1. Simultaneous, whole-cell recordings were obtained from synaptically coupled photoreceptor/bipolar cell pairs, by the use of direct visualization in a superfused, mudpuppy retinal slice preparation. 2. OFF-bipolar cells (BPs) generated sign-conserving responses when extrinsic current was injected into rods and cones, whereas ON-BPs generated a sign-reversing response. OFF-BPs (n = 24) responded faster than ON-BPs (n = 12), in terms of response latency (27.8 vs. 80.6 ms) and peak response times (50.5 vs. 159.8 ms) when current was injected into photoreceptors. We did not detect any significant difference between rod- versus cone-mediated latency or peak response times in the ON- and OFF-BP subtypes. 3. Rod and cone inputs to OFF-BPs were blocked by kynurenic acid (Kyn), but the doses required were significantly higher for rod inputs: the IC50 (the concentration at which an antagonist blocks 50% of the responses) for Kyn was 0.3 mM for cone inputs and 1 mM for rod inputs. 4. Rod inputs to OFF-BPs showed the same Kyn sensitivity as rod inputs to horizontal cells (HCs). However, cone inputs to HCs (IC50 < 200 microM) were more sensitive to Kyn than those to OFF-BPs. 5. The pharmacological studies presented here, together with previous studies, suggest that the sign-conserving pathway in the outer plexiform layer of the mudpuppy retina involves at least three subtypes of glutamate receptors: 1) cone-activated receptors of HCs; 2) cone-activated receptors of OFF-BPs; and 3) rod-activated receptors found in HCs and BPs.(ABSTRACT TRUNCATED AT 250 WORDS)

Pubmed ID: 8384660

Authors

  • Kim HG
  • Miller RF

Journal

Journal of neurophysiology

Publication Data

February 28, 1993

Associated Grants

  • Agency: NEI NIH HHS, Id: R01 EY-03014

Mesh Terms

  • Aminobutyrates
  • Animals
  • Egtazic Acid
  • Electrophysiology
  • In Vitro Techniques
  • Kinetics
  • Kynurenic Acid
  • Necturus
  • Photic Stimulation
  • Photoreceptor Cells
  • Retina
  • Synapses
  • Synaptic Transmission