We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Distributed processing of pain and vibration by the human brain.

Pain is a diverse sensory and emotional experience that likely involves activation of numerous regions of the brain. Yet, many of these areas are also implicated in the processing of nonpainful somatosensory information. In order to better characterize the processing of pain within the human brain, activation produced by noxious stimuli was compared with that produced by robust innocuous stimuli. Painful heat (47-48 degrees C), nonpainful vibratory (110 Hz), and neutral control (34 degrees C) stimuli were applied to the left forearm of right-handed male subjects. Activation of regions within the diencephalon and telencephalon was evaluated by measuring regional cerebral blood flow using positron emission tomography (15O-water-bolus method). Painful stimulation produced contralateral activation in primary and secondary somatosensory cortices (SI and SII), anterior cingulate cortex, anterior insula, the supplemental motor area of the frontal cortex, and thalamus. Vibrotactile stimulation produced activation in contralateral SI, and bilaterally in SII and posterior insular cortices. A direct comparison of pain and vibrotactile stimulation revealed that both stimuli produced activation in similar regions of SI and SII, regions long thought to be involved in basic somatosensory processing. In contrast, painful stimuli were significantly more effective in activating the anterior insula, a region heavily linked with both somatosensory and limbic systems. Such connections may provide one route through which nociceptive input may be integrated with memory in order to allow a full appreciation of the meaning and dangers of painful stimuli. These data reveal that pain-related activation, although predominantly contralateral in distribution, is more widely dispersed across both cortical and thalamic regions than that produced during innocuous vibrotactile stimulation. This distributed cerebral activation reflects the complex nature of pain, involving discriminative, affective, autonomic, and motoric components. Furthermore, the high degree of interconnectivity among activated regions may account for the difficulty of eliminating pathological pain with discrete CNS lesions.

Pubmed ID: 8027764 RIS Download

Mesh terms: Adult | Brain | Cerebrovascular Circulation | Heart Rate | Hot Temperature | Humans | Male | Pain | Physical Stimulation | Psychophysics | Skin Physiological Phenomena | Tomography, Emission-Computed | Vibration

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants


SumsDB (Data, Activation Foci)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.