Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A truncated beta-catenin disrupts the interaction between E-cadherin and alpha-catenin: a cause of loss of intercellular adhesiveness in human cancer cell lines.

Cancer research | Dec 1, 1994

http://www.ncbi.nlm.nih.gov/pubmed/7954478

Cadherin cell adhesion molecules play an essential role in creating tight intercellular association and are considered to work as an invasion suppressor system of cancer cells. They form a molecular complex with catenins, a group of cytoplasmic proteins including alpha- and beta-catenins. While alpha-catenin has been demonstrated to be crucial for cadherin function, the role of beta-catenin is not yet fully understood. In this study, we analyzed the cadherin-catenin system in two human cell lines, HSC-39 and its putative subline HSC-40A, derived from a signet ring cell carcinoma of stomach. These cells grow as loose aggregates or single cells, suggesting that their cadherin system is not functional. In these cell lines, an identical 321-base pair in-frame mRNA deletion of beta-catenin was identified; this led to a 107-amino-acid deletion in the NH2-terminal region of the protein. Southern blot analysis disclosed a homozygous deletion in part of the beta-catenin gene. On the other hand, these cells expressed E-cadherin, alpha-catenin, and plakoglobin of normal size. Immunoprecipitation analyses showed that E-cadherin was coprecipitated with the mutated beta-catenin but not with alpha-catenin, and antibodies against beta-catenin did not copurify alpha-catenin. However, the recombinant fusion protein containing wild-type beta-catenin precipitated alpha-catenin from these cells. These results suggest that the dysfunction of E-cadherin in these cell lines is due primarily to its failure to interact with alpha-catenin, and that this defect results from the mutation in beta-catenin. Thus, it is most likely that the association between E-cadherin and alpha-catenin is mediated by beta-catenin, and that this process is blocked by NH2-terminal deletion in beta-catenin. These findings indicate that genetic abnormality of beta-catenin is one of the mechanisms responsible for loosening of cell-cell contact, and may be involved in enhancement of tumor invasion in human cancers.

Pubmed ID: 7954478 RIS Download

Mesh terms: Animals | Base Sequence | Cadherins | Cell Adhesion | Cytoskeletal Proteins | Humans | Immunoblotting | Mice | Mice, Inbred BALB C | Molecular Sequence Data | Mutation | Neoplasm Invasiveness | Neoplasms | Precipitin Tests | RNA, Messenger | Trans-Activators | Tumor Cells, Cultured | beta Catenin