We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice.

Tyrosine 3-hydroxylase (TH, EC catalyzes the first and rate-limiting step of the catecholamine biosynthetic pathway in the nervous and endocrine systems. The TH locus was disrupted in mouse embryonic stem cells by homologous recombination. Mice heterozygous for the TH mutation were apparently normal. In these mice, TH activity in the embryos and adult tissues was less than 50% of the wild-type values, but the catecholamine level was decreased only moderately in the developing animals and was maintained normally at adulthood, suggesting the presence of a regulatory mechanism for ensuring the proper catecholamine level during animal development. In contrast, the homozygous mutant mice died at a late stage of embryonic development or shortly after birth. Both TH mRNA and enzyme activity were lacking in the homozygous mutants, which thus explained the severe depletion of catecholamines. These changes, however, did not affect gross morphological development of the cells that normally express high catecholamine levels. Analysis of electrocardiograms of surviving newborn mutants showed bradycardia, suggesting an alteration of cardiac functions in the homozygous mice that may lead to the lethality of this mutation. In addition, transfer of a human TH transgene into the homozygous mice corrected the mutant phenotype, showing recovery of TH activity by expression of the human enzyme. These results indicate that TH is essential for survival of the animals during the late gestational development and after birth.

Pubmed ID: 7592982 RIS Download

Mesh terms: Animals | Animals, Newborn | Base Sequence | Catecholamines | DNA Primers | Female | Gene Targeting | Genes, Lethal | Heart | Homozygote | Humans | Male | Mice | Mice, Transgenic | Molecular Sequence Data | Mutation | Phenotype | RNA, Messenger | Tyrosine 3-Monooxygenase

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants


Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.