Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Impact of mTOR hyperactive neurons on the morphology and physiology of adjacent neurons: Do PTEN KO cells make bad neighbors?

Experimental neurology | 2019

Hyperactivation of the mechanistic target of rapamycin (mTOR) pathway is associated with epilepsy, autism and brain growth abnormalities in humans. mTOR hyperactivation often results from developmental somatic mutations, producing genetic lesions and associated dysfunction in relatively restricted populations of neurons. Disrupted brain regions, such as those observed in focal cortical dysplasia, can contain a mix of normal and mutant cells. Mutant cells exhibit robust anatomical and physiological changes. Less clear, however, is whether adjacent, initially normal cells are affected by the presence of abnormal cells. To explore this question, we used a conditional, inducible mouse model approach to delete the mTOR negative regulator phosphatase and tensin homolog (PTEN) from <1% to >30% of hippocampal dentate granule cells. We then examined the morphology of PTEN-expressing granule cells located in the same dentate gyri as the knockout (KO) cells. Despite the development of spontaneous seizures in higher KO animals, and disease worsening with increasing age, the morphology and physiology of PTEN-expressing cells was only modestly affected. PTEN-expressing cells had smaller somas than cells from control animals, but other parameters were largely unchanged. These findings contrast with the behavior of PTEN KO cells, which show increasing dendritic extent with greater KO cell load. Together, the findings indicate that genetically normal neurons can exhibit relatively stable morphology and intrinsic physiology in the presence of nearby pathological neurons and systemic disease.

Pubmed ID: 31377403 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


STOCK Gli1tm3(cre/ERT2)Alj/J (organism)

RRID:IMSR_JAX:007913

Mus musculus with name STOCK Gli1tm3(cre/ERT2)Alj/J from IMSR.

View all literature mentions

NIS-Elements (software resource)

RRID:SCR_014329

Microscope imaging software suite used with Nikon products. NIS-Elements includes software applications for advanced and standard research, documentation, confocal microscopy, and high-content analysis.

View all literature mentions

B6.129S4-Ptentm1Hwu/J (organism)

RRID:IMSR_JAX:006440

Mus musculus with name B6.129S4-Ptentm1Hwu/J from IMSR.

View all literature mentions

SigmaPlot (software resource)

RRID:SCR_003210

Statistical analysis and scientific graphing software for Windows OS.

View all literature mentions

Leica Application Suite X (resource)

RRID:SCR_013673

Software for image capture, processing and analysis with Leica fluorescence and confocal microscopes.

View all literature mentions

Neurolucida (software resource)

RRID:SCR_001775

Neurolucida is advanced scientific software for brain mapping, neuron reconstruction, anatomical mapping, and morphometry. Since its debut more than 20 years ago, Neurolucida has continued to evolve and has become the worldwide gold-standard for neuron reconstruction and 3D mapping. Neurolucida has the flexibility to handle data in many formats: using live images from digital or video cameras; stored image sets from confocal microscopes, electron microscopes, and scanning tomographic sources, or through the microscope oculars using the patented LucividTM. Neurolucida controls a motorized XYZ stage for integrated navigation through tissue sections, allowing for sophisticated analysis from many fields-of-view. Neurolucidas Serial Section Manager integrates unlimited sections into a single data file, maintaining each section in aligned 3D space for full quantitative analysis. Neurolucidas neuron tracing capabilities include 3D measurement and reconstruction of branching processes. Neurolucida also features sophisticated tools for mapping delineate and map anatomical regions for detailed morphometric analyses. Neurolucida uses advanced computer-controlled microscopy techniques to obtain accurate results and speed your work. Plug-in modules are available for confocal and MRI analysis, 3D solid modeling, and virtual slide creation. The user-friendly interface gives you rapid results, allowing you to acquire data and capture the full 3D extent of neurons and brain regions. You can reconstruct neurons or create 3D serial reconstructions directly from slides or acquired images, and Neurolucida offers full microscope control for brightfield, fluorescent, and confocal microscopes. Its added compatibility with 64-bit Microsoft Vista enables reconstructions with even larger images, image stacks, and virtual slides. Adding the Solid Modeling Module allows you to rotate and view your reconstructions in real time. Neurolucida is available in two separate versions Standard and Workstation. The Standard version enables control of microscope hardware, whereas the Workstation version is used for offline analysis away from the microscope. Neurolucida provides quantitative analysis with results presented in graphical or spreadsheet format exportable to Microsoft Excel. Overall, features include: - Tracing Neurons - Anatomical Mapping - Image Processing and Analysis Features - Editing - Morphometric Analysis - Hardware Integration - Cell Analysis - Visualization Features Sponsors: Neurolucida is supported by MBF Bioscience.

View all literature mentions

B6.129S4-Ptentm1Hwu/J (organism)

RRID:IMSR_JAX:006440

Mus musculus with name B6.129S4-Ptentm1Hwu/J from IMSR.

View all literature mentions

STOCK Gli1tm3(cre/ERT2)Alj/J (organism)

RRID:IMSR_JAX:007913

Mus musculus with name STOCK Gli1tm3(cre/ERT2)Alj/J from IMSR.

View all literature mentions