Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A Flower-Specific Phospholipase D Is a Stigmatic Compatibility Factor Targeted by the Self-Incompatibility Response in Brassica napus.

Current biology : CB | 2019

Self-incompatibility (SI) is a genetic mechanism in hermaphroditic flowers that prevents inbreeding by rejection of self-pollen, while allowing cross- or genetically diverse pollen to germinate on the stigma to successfully fertilize the ovules. In Brassica, SI is initiated by the allele-specific recognition of pollen-encoded, secreted ligand (SCR/SP11) by the stigmatic receptor kinase S-locus receptor kinase (SRK), resulting in activation of SRK through phosphorylation [1-3]. Once activated, this phospho-relay converges on intracellular compatibility factors, which are immediately targeted for degradation by the E3 ligase, ARC1, resulting in the pollen rejection response [4, 5]. Through proteomics approach using proteins from SI activated stigmas of Brassica napus, we identified phospholipase D α1 (PLDα1) as one of the candidates that is most likely targeted for degradation after SI [6]. PLDα1 is enriched in the stigmas and functions as a stigmatic compatibility factor as loss of PLDα1 compromised compatible pollination, while overexpression of PLDα1 in self-incompatible stigmas led to breakdown of SI response. PLDα1 can be ubiquitinated by ARC1 and accumulate in ARC1-suppressed lines, confirming PLDα1 as a target of ARC1 during SI response. Addition of phosphatidic acid (PA) to PLDα1-deficient stigmas was sufficient to rescue compatibility, suggesting an essential role for PA generated by PLDα1 for compatible interactions. We propose that PA produced by PLDα1 activity during compatible pollination promotes vesicle fusion at the membrane to facilitate exocytosis necessary for pollen germination to occur, while SI response could abrogate this process by targeting PLDα1 for degradation.

Pubmed ID: 30661797 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Millipore (tool)

RRID:SCR_008983

An Antibody supplier

View all literature mentions

Microsoft Excel (tool)

RRID:SCR_016137

Software application with data analysis tools and spreadsheet templates to track and visualize data. It is used to manage and process data.

View all literature mentions

RFP Antibody Pre-adsorbed (antibody)

RRID:AB_2209751

This polyclonal targets RFP

View all literature mentions