Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Extrastriate connectivity of the mouse dorsal lateral geniculate thalamic nucleus.

The Journal of comparative neurology | 2019

The mammalian visual system is one of the most well-studied brain systems. Visual information from the retina is relayed to the dorsal lateral geniculate nucleus of the thalamus (LGd). The LGd then projects topographically to primary visual cortex (VISp) to mediate visual perception. In this view, the VISp is a critical network hub where visual information must traverse LGd-VISp circuits to reach higher order "extrastriate" visual cortices, which surround the VISp on its medial and lateral borders. However, decades of conflicting reports in a variety of mammals support or refute the existence of extrastriate LGd connections that can bypass the VISp. Here, we provide evidence of bidirectional extrastriate connectivity with the mouse LGd. Using small, discrete coinjections of anterograde and retrograde tracers within the thalamus and cortex, our cross-validated approach identified bidirectional connectivity between LGd and extrastriate visual cortices. We find robust reciprocal connectivity of the medial extrastriate regions with LGd neurons distributed along the "ventral strip" border with the intergeniculate leaflet. In contrast, LGd input to lateral extrastriate regions is sparse, but lateral extrastriate regions return stronger descending projections to localized LGd areas. We show further evidence that axons from lateral extrastriate regions can overlap onto medial extrastriate-projecting LGd neurons in the ventral strip, providing a putative subcortical LGd pathway for communication between medial and lateral extrastriate regions. Overall, our findings support the existence of extrastriate LGd circuits and provide novel understanding of LGd organization in rodent visual system.

Pubmed ID: 30620046 RIS Download

Associated grants

  • Agency: NIMH NIH HHS, United States
    Id: U19 MH114821
  • Agency: NEI NIH HHS, United States
    Id: F31 EY029569
  • Agency: NIMH NIH HHS, United States
    Id: F32 MH107071
  • Agency: NIMH NIH HHS, United States
    Id: R01 MH094360
  • Agency: NIMH NIH HHS, United States
    Id: U01 MH114829

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


BICCN (tool)

RRID:SCR_015820

Consortium for the cell census in the brain. Integrated network of data generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate brains.

View all literature mentions

Neuropeptide Y Antibody (antibody)

RRID:AB_2307354

This polyclonal targets Neuropeptide Y

View all literature mentions