Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Differential Regulation of Thermodynamic Binding Forces of Levocetirizine and (S)-Cetirizine by Lys191 in Human Histamine H₁ Receptors.

International journal of molecular sciences | 2018

Cetirizine is a zwitterionic second-generation antihistamine containing R- and S-enantiomers, levocetirizine, and (S)-cetirizine. Levocetirizine is known to have a higher affinity for the histamine H₁ receptors than (S)-cetirizine; ligand-receptor docking simulations have suggested the importance of the formation of a salt bridge (electrostatic interaction) between the carboxylic group of levocetirizine and the Lys191 residue at the fifth transmembrane domain of human histamine H₁ receptors. In this study, we evaluated the roles of Lys191 in the regulation of the thermodynamic binding forces of levocetirizine in comparison with (S)-cetirizine. The binding enthalpy and entropy of these compounds were estimated from the van 't Hoff equation, by using the dissociation constants obtained from their displacement curves against the binding of [³H]mepyramine to the membrane preparations of Chinese hamster ovary cells expressing wild-type human H₁ receptors and their Lys191 mutants to alanine at various temperatures. We found that the higher binding affinity of wild-type H₁ receptors for levocetirizine than (S)-cetirizine was achieved by stronger forces of entropy-dependent hydrophobic binding of levocetirizine. The mutation of Lys191 to alanine reduced the affinities for levocetirizine and (S)-cetirizine, through a reduction in the entropy-dependent hydrophobic binding forces of levocetirizine and the enthalpy-dependent electrostatic binding forces of (S)-cetirizine. These results suggested that Lys191 differentially regulates the binding enthalpy and entropy of these enantiomers, and that Lys191 negatively regulates the enthalpy-dependent electrostatic binding forces of levocetirizine, contrary to the predictions derived from the ligand-receptor docking simulations.

Pubmed ID: 30558340 RIS Download

Research resources used in this publication

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


KaleidaGraph (tool)

RRID:SCR_014980

Data analysis, graphing, and management application that allows users to import, manipulate, analyze data, and create customized plots. Plots include x-y probability, histogram, box, percentile, horizontal bar, stack bar, column, stack column, polar, and pie. Binned data can be exported to a histogram, step plot, or spike plot. KaleidaGraph works with Windows and Macintosh systems.

View all literature mentions

CHO-K1 (cell line)

RRID:CVCL_0214

Cell line CHO-K1 is a Spontaneously immortalized cell line with a species of origin Cricetulus griseus (Chinese hamster)

View all literature mentions