Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Oligopeptide Signaling through TbGPR89 Drives Trypanosome Quorum Sensing.

Cell | 2019

Trypanosome parasites control their virulence and spread by using quorum sensing (QS) to generate transmissible "stumpy forms" in their host bloodstream. However, the QS signal "stumpy induction factor" (SIF) and its reception mechanism are unknown. Although trypanosomes lack G protein-coupled receptor signaling, we have identified a surface GPR89-family protein that regulates stumpy formation. TbGPR89 is expressed on bloodstream "slender form" trypanosomes, which receive the SIF signal, and when ectopically expressed, TbGPR89 drives stumpy formation in a SIF-pathway-dependent process. Structural modeling of TbGPR89 predicts unexpected similarity to oligopeptide transporters (POT), and when expressed in bacteria, TbGPR89 transports oligopeptides. Conversely, expression of an E. coli POT in trypanosomes drives parasite differentiation, and oligopeptides promote stumpy formation in vitro. Furthermore, the expression of secreted trypanosome oligopeptidases generates a paracrine signal that accelerates stumpy formation in vivo. Peptidase-generated oligopeptide QS signals being received through TbGPR89 provides a mechanism for both trypanosome SIF production and reception.

Pubmed ID: 30503212 RIS Download

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 103740/Z14/Z
  • Agency: Wellcome Trust, United Kingdom
    Id: 202094/Z/16/Z
  • Agency: Medical Research Council, United Kingdom
    Id: MR/M020118/1
  • Agency: Wellcome Trust, United Kingdom
  • Agency: Medical Research Council, United Kingdom
    Id: J54359

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GeneDB (tool)

RRID:SCR_002774

Database of genomes at various stages of completion, from early access to partial genomes with automatic annotation through to complete genomes with extensive manual curation. Its primary goals are: 1) to provide reliable access to the latest sequence data and annotation/curation for the whole range of organisms sequenced by the Pathogen group, and 2) to develop the website and other tools to aid the community in accessing and obtaining the maximum value from these data.

View all literature mentions

Eukaryotic Linear Motif (tool)

RRID:SCR_003085

Computational biology resource for investigating candidate functional sites in eukarytic proteins. Functional sites which fit to the description linear motif are currently specified as patterns using Regular Expression rules. To improve the predictive power, context-based rules and logical filters are being developed and applied to reduce the amount of false positives. The current version of the ELM server provides core functionality including filtering by cell compartment, phylogeny, globular domain clash (using the SMART/Pfam databases) and structure. In addition, both the known ELM instances and any positionally conserved matches in sequences similar to ELM instance sequences are identified and displayed (see ELM instance mapper). Although the ELM resource contains a large collection of functional site motifs, the current set of motifs is not exhaustive.

View all literature mentions

Pfam (tool)

RRID:SCR_004726

A database of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). Users can analyze protein sequences for Pfam matches, view Pfam family annotation and alignments, see groups of related families, look at the domain organization of a protein sequence, find the domains on a PDB structure, and query Pfam by keywords. There are two components to Pfam: Pfam-A and Pfam-B. Pfam-A entries are high quality, manually curated families that may automatically generate a supplement using the ADDA database. These automatically generated entries are called Pfam-B. Although of lower quality, Pfam-B families can be useful for identifying functionally conserved regions when no Pfam-A entries are found. Pfam also generates higher-level groupings of related families, known as clans (collections of Pfam-A entries which are related by similarity of sequence, structure or profile-HMM).

View all literature mentions

TriTrypDB (tool)

RRID:SCR_007043

An integrated genomic and functional genomic database providing access to genome-scale datasets for kinetoplastid parasites, and supporting a variety of complex queries driven by research and development needs. Currently, TriTrypDB integrates datasets from Leishmania braziliensis, L. infantum, L. major, L. tarentolae, Trypanosoma brucei and T. cruzi. Users may examine individual genes or chromosomal spans in their genomic context, including syntenic alignments with other kinetoplastid organisms. Data within TriTrypDB can be interrogated utilizing a sophisticated search strategy system that enables a user to construct complex queries combining multiple data types. All search strategies are stored, allowing future access and integrated searches. ''''User Comments'''' may be added to any gene page, enhancing available annotation; such comments become immediately searchable via the text search, and are forwarded to curators for incorporation into the reference annotation when appropriate. TriTrypDB provides programmatic access to its searches, via REST Web Services. The result of a web service request is a list of records (genes, ESTs, etc) in either XML or JSON format. REST services can be executed in a browser by typing a specific URL. TriTrypDB and its continued development are possible through the collaborative efforts between EuPathDB, GeneDB and colleagues at the Seattle Biomedical Research Institute (SBRI).

View all literature mentions

FlowJo (tool)

RRID:SCR_008520

Software for single-cell flow cytometry analysis. Its functions include management, display, manipulation, analysis and publication of the data stream produced by flow and mass cytometers.

View all literature mentions

MUSCLE (tool)

RRID:SCR_011812

Multiple sequence alignment method with reduced time and space complexity.Multiple sequence alignment with high accuracy and high throughput. Data analysis service for multiple sequence comparison by log- expectation.

View all literature mentions

BD Biosciences (tool)

RRID:SCR_013311

An Antibody supplier

View all literature mentions

Biotrend (tool)

RRID:SCR_013537

An Antibody supplier

View all literature mentions

I-TASSER (tool)

RRID:SCR_014627

Web server as integrated platform for automated protein structure and function prediction. Used for protein 3D structure prediction. Resource for automated protein structure prediction and structure-based function annotation.

View all literature mentions

Mouse Anti-Parasite Trypanosoma brucei procyclin (EP) Monoclonal antibody, Unconjugated, Clone tbrp1/247 (antibody)

RRID:AB_10060662

This monoclonal targets Mouse Parasite Trypanosoma brucei procyclin (EP) antibody Clone tbrp1/247

View all literature mentions

Mouse Anti-Parasite Trypanosoma brucei procyclin (EP) Monoclonal antibody, Unconjugated, Clone tbrp1/247 (antibody)

RRID:AB_10060662

This monoclonal targets Mouse Parasite Trypanosoma brucei procyclin (EP) antibody Clone tbrp1/247

View all literature mentions

Mouse Anti-Parasite Trypanosoma brucei procyclin (EP) Monoclonal antibody, Unconjugated, Clone tbrp1/247 (antibody)

RRID:AB_10060662

This monoclonal targets Mouse Parasite Trypanosoma brucei procyclin (EP) antibody Clone tbrp1/247

View all literature mentions