Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genome Editing Reveals Idiosyncrasy of CNGA2 Ion Channel-Directed Antibody Immunoreactivity Toward Oxytocin.

Frontiers in cell and developmental biology | 2018

Presynaptic cGMP-gated ion (CNG) channels positively or negatively modulate neurotransmitter secretion as well as the strength of synaptic transmission. Zebrafish cGMP-gated ion channel, CNGA2a (a.k.a. CNGA5), was previously reported to be specifically enriched in synaptic terminals of zebrafish oxytocin (OXT) neurons. This conclusion was based on immunoreactivity of a monoclonal antibody (mAb) clone L55/54, which was directed against the carboxy terminal tail of the CNGA2a. To study the role of CNGA2a in oxytocin neurons function, we generated zebrafish mutants of cnga2a, cnga2b and oxt genes using clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing. We show that mAb L55/54 specifically recognizes CNGA2a protein when expressed in heterologous cell culture system. Surprisingly, anti-CNGA2a immunoreactivity was not eliminated following knockout of either cnga2a, cnga2b or both. However, knockout of oxt resulted in total loss of anti-CNGA2a mAb immunoreactivity despite the lack of sequence and structural similarities between OXT and CNGA2a proteins. Our results provide a noteworthy lesson of differences in antibody immunoreactivity, which could only be revealed using specific genetic tools.

Pubmed ID: 30294598 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Addgene (tool)

RRID:SCR_002037

Non-profit plasmid repository dedicated to helping scientists around the world share high-quality plasmids. Facilitates archiving and distributing DNA-based research reagents and associated data to scientists worldwide. Repository contains over 65,000 plasmids, including special collections on CRISPR, fluorescent proteins, and ready-to-use viral preparations. There is no cost for scientists to deposit plasmids, which saves time and money associated with shipping plasmids themselves. All plasmids are fully sequenced for validation and sequencing data is openly available. We handle the appropriate Material Transfer Agreements (MTA) with institutions, facilitating open exchange and offering intellectual property and liability protection for depositing scientists. Furthermore, we curate free educational resources for the scientific community including a blog, eBooks, video protocols, and detailed molecular biology resources.

View all literature mentions

metaphor (tool)

RRID:SCR_003450

A free and open-source add-on for conducting meta-analyses with the statistical software environment R.

View all literature mentions

HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

Adobe Photoshop (software resource)

RRID:SCR_014199

Software for image processing, analysis, and editing. The software includes features such as touch capabilities, a customizable toolbar, 2D and 3D image merging, and Cloud access and options.

View all literature mentions

ZEISS ZEN Microscopy Software (software resource)

RRID:SCR_013672

User interface software for Carl Zeiss light microscopy imaging systems. ZEN is the universal user interface you will see on every imaging system from ZEISS. After selecting fluorophore, ZEN applies the necessary settings to collect and organize data.

View all literature mentions

Zebrafish Brain Atlas (atlas)

RRID:SCR_000606

Collates and curates neuroanatomical data and information generated both in-house and by community to communicate current state of knowledge about neuroanatomical structures in developing zebrafish. Most of data come from high resolution confocal imaging of intact brains in which neuroanatomical structures are labelled by combinations of transgenes and antibodies. Community repository for image based data related to neuroanatomy of zebrafish.

View all literature mentions