Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Manganese causes neurotoxic iron accumulation via translational repression of amyloid precursor protein and H-Ferritin.

Journal of neurochemistry | 2018

For more than 150 years, it is known that occupational overexposure of manganese (Mn) causes movement disorders resembling Parkinson's disease (PD) and PD-like syndromes. However, the mechanisms of Mn toxicity are still poorly understood. Here, we demonstrate that Mn dose- and time-dependently blocks the protein translation of amyloid precursor protein (APP) and heavy-chain Ferritin (H-Ferritin), both iron homeostatic proteins with neuroprotective features. APP and H-Ferritin are post-transcriptionally regulated by iron responsive proteins, which bind to homologous iron responsive elements (IREs) located in the 5'-untranslated regions (5'-UTRs) within their mRNA transcripts. Using reporter assays, we demonstrate that Mn exposure repressed the 5'-UTR-activity of APP and H-Ferritin, presumably via increased iron responsive proteins-iron responsive elements binding, ultimately blocking their protein translation. Using two specific Fe2+ -specific probes (RhoNox-1 and IP-1) and ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS), we show that loss of the protective axis of APP and H-Ferritin resulted in unchecked accumulation of redox-active ferrous iron (Fe2+ ) fueling neurotoxic oxidative stress. Enforced APP expression partially attenuated Mn-induced generation of cellular and lipid reactive oxygen species and neurotoxicity. Lastly, we could validate the Mn-mediated suppression of APP and H-Ferritin in two rodent in vivo models (C57BL6/N mice and RjHan:SD rats) mimicking acute and chronic Mn exposure. Together, these results suggest that Mn-induced neurotoxicity is partly attributable to the translational inhibition of APP and H-Ferritin resulting in impaired iron metabolism and exacerbated neurotoxic oxidative stress. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.

Pubmed ID: 30152072 RIS Download

Additional research tools detected in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIH HHS, United States
    Id: AG051086
  • Agency: NIA NIH HHS, United States
    Id: P30 AG010133
  • Agency: NIA NIH HHS, United States
    Id: R01 AG056614
  • Agency: NIH HHS, United States
    Id: AG056614
  • Agency: NIA NIH HHS, United States
    Id: R01 AG051086

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SH-SY5Y (cell line)

RRID:CVCL_0019

Cell line SH-SY5Y is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

SH-SY5Y (cell line)

RRID:CVCL_0019

Cell line SH-SY5Y is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions