Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cell-Instructive Alginate Hydrogels Targeting RhoA.

Bioconjugate chemistry | 2018

Cellular processes involve dynamic rearrangement of the cytoskeleton. The GTPase RhoA plays a fundamental role in controlling cytoskeletal architecture. The phenotypic stability of chondrocytes is enhanced through inhibition of RhoA, whereas RhoA activation leads to dedifferentiation. We hypothesized that local inhibition of this pathway could induce chondrogenesis and cartilage regeneration. In this study, a novel alginate-derived hydrogel system was developed for sustained RhoA targeting. Specifically, an engineered variant of C. botulinum C3 transferase, a potent RhoA inhibitor, was immobilized onto a hydrogel to achieve sustained release and enzymatic activity. Chondrocytes encapsulated within this fully biocompatible, mechanically stable scaffold produced a stable collagen type II-rich matrix in vitro which matured over a six-week period. Samples were implanted subcutaneously in mice, and similar production of a collagen type II-rich matrix was observed. The intrinsically versatile system has the potential to treat a number of clinical disorders, including osteoarthritis, linked with RhoA dysregulation.

Pubmed ID: 30125096 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.