Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Crystal Structure of the COMPASS H3K4 Methyltransferase Catalytic Module.

Cell | 2018

The SET1/MLL family of histone methyltransferases is conserved in eukaryotes and regulates transcription by catalyzing histone H3K4 mono-, di-, and tri-methylation. These enzymes form a common five-subunit catalytic core whose assembly is critical for their basal and regulated enzymatic activities through unknown mechanisms. Here, we present the crystal structure of the intact yeast COMPASS histone methyltransferase catalytic module consisting of Swd1, Swd3, Bre2, Sdc1, and Set1. The complex is organized by Swd1, whose conserved C-terminal tail not only nucleates Swd3 and a Bre2-Sdc1 subcomplex, but also joins Set1 to construct a regulatory pocket next to the catalytic site. This inter-subunit pocket is targeted by a previously unrecognized enzyme-modulating motif in Swd3 and features a doorstop-style mechanism dictating substrate selectivity among SET1/MLL family members. By spatially mapping the functional components of COMPASS, our results provide a structural framework for understanding the multifaceted functions and regulation of the H3K4 methyltransferase family.

Pubmed ID: 30100181 RIS Download

Associated grants

  • Agency: Howard Hughes Medical Institute, United States
  • Agency: NIAMS NIH HHS, United States
    Id: R01 AR065459
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM110430
  • Agency: NIGMS NIH HHS, United States
    Id: T32 GM008268

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


H3-celegans (antibody)

RRID:AB_302613

This polyclonal targets H3

View all literature mentions

Anti-Histone H3 (tri methyl K4) antibody - ChIP Grade (antibody)

RRID:AB_306649

This polyclonal targets Histone H3 (tri methyl K4)

View all literature mentions

H3K4me2-human (antibody)

RRID:AB_2560996

This polyclonal targets H3K4me2

View all literature mentions

H3K4me1-human (antibody)

RRID:AB_10695148

This unknown targets H3K4me1

View all literature mentions

PyMOL (software resource)

RRID:SCR_000305

A user-sponsored molecular visualization software system on an open-source foundation. The software has the capabilities to view, render, animate, export, present and develop three dimensional molecular structures.

View all literature mentions

Coot (software resource)

RRID:SCR_014222

Software for macromolecular model building, model completion and validation, and protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, rigid-body fitting, ligand search, Ramachandran plots, non-crystallographic symmetry and more. Source code is available.

View all literature mentions

Phenix (software resource)

RRID:SCR_014224

A Python-based software suite for the automated determination of molecular structures using X-ray crystallography and other methods. Phenix includes programs for assessing data quality, experimental phasing, molecular replacement, model building, structure refinement, and validation. It also includes tools for reflection data and creating maps and models. Phenix can also be used for neutron crystallography. Tutorials and examples are available in the documentation tab.

View all literature mentions