Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Global epigenetic analysis of BDNF Val66Met mice hippocampus reveals changes in dendrite and spine remodeling genes.

Hippocampus | 2018

Brain-derived neurotrophic factor (BDNF), a neurotrophin highly expressed in the hippocampus, plays crucial roles in cognition, neuroplasticity, synaptic function, and dendritic remodeling. The common human Val66Met polymorphism of BDNF has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders, and in the outcome of pro-adaptive and therapeutic treatments. Altered gene-expression profile has been previously shown in BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNF Met allele. The aim of this study was to investigate the impact of the BDNF Val66Met polymorphism in the knock-in mouse model on two hippocampal epigenetic marks for transcriptional repression and activation, respectively: trimethylation of lysine 27 on histone H3 (H3K27me3) and acetylation of histone H3 (AcH3), using a genome-wide approach. Chromatin immunoprecipitation followed by deep sequencing of immunoprecipitated DNA (ChIP-Seq) was carried out with specific antibodies for H3K27me3 and AcH3. Our results revealed broad alteration of H3K27me3 and AcH3 marks association profiles in BDNFMet/Met , compared to BDNFVal/Val mice. Bioinformatics analysis showed changes in several biological functions and related pathways, affected by the presence of the polymorphism. In particular, a number of networks of functional interaction contained BDNF as central node. Quantitative PCR analysis confirmed epigenetically related significant changes in the expression of five genes: Dvl1, Nos3, Reln, Lypd6, and Sh3gl2. The first three are involved in dendrite and spine remodeling, morphological features altered in BDNFMet/Met mice. This work in homozygous knock-in mice shows that the human BDNF Val66Met polymorphism induces an array of histone H3 epigenetic modifications, in turn altering the expression of select genes crucial for structural and functional neuronal features.

Pubmed ID: 30067287 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


H3ac-mouse (antibody)

RRID:AB_2115283

This polyclonal targets H3ac

View all literature mentions

Integrative Genomics Viewer (software resource)

RRID:SCR_011793

A high-performance visualization tool for interactive exploration of large, integrated genomic datasets.

View all literature mentions

GraphPad Prism (software resource)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions

Broad Institute (institution)

RRID:SCR_007073

Biomedical and genomic research center located in Cambridge, Massachusetts, United States. Nonprofit research organization under the name Broad Institute Inc., and is partners with Massachusetts Institute of Technology, Harvard University, and the five Harvard teaching hospitals. Dedicated to advance understanding of biology and treatment of human disease to improve human health.

View all literature mentions

Ingenuity Pathway Analysis (pathway analysis tool)

RRID:SCR_008653

A web-based software application that enables users to analyze, integrate, and understand data derived from gene expression, microRNA, and SNP microarrays, metabolomics, proteomics, and RNA-Seq experiments, and small-scale experiments that generate gene and chemical lists. Users can search for targeted information on genes, proteins, chemicals, and drugs, and build interactive models of experimental systems. IPA allows exploration of molecular, chemical, gene, protein and miRNA interactions, creation of custom molecular pathways, and the ability to view and modify metabolic, signaling, and toxicological canonical pathways. In addition to the networks and pathways that can be created, IPA can provide multiple layering of additional information, such as drugs, disease genes, expression data, cellular functions and processes, or a researchers own genes or chemicals of interest.

View all literature mentions

SICER (software resource)

RRID:SCR_010843

A clustering software package for identification of enriched domains from histone modification ChIP-Seq data.

View all literature mentions

BEDTools (software resource)

RRID:SCR_006646

A powerful toolset for genome arithmetic allowing one to address common genomics tasks such as finding feature overlaps and computing coverage. Bedtools allows one to intersect, merge, count, complement, and shuffle genomic intervals from multiple files in widely-used genomic file formats such as BAM, BED, GFF/GTF, VCF. While each individual tool is designed to do a relatively simple task (e.g., intersect two interval files), quite sophisticated analyses can be conducted by combining multiple bedtools operations on the UNIX command line.

View all literature mentions

GREAT: Genomic Regions Enrichment of Annotations Tool (software resource)

RRID:SCR_005807

Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool

View all literature mentions

GraphPad Prism (software resource)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions

Integrative Genomics Viewer (software resource)

RRID:SCR_011793

A high-performance visualization tool for interactive exploration of large, integrated genomic datasets.

View all literature mentions