Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Extensive somatosensory and motor corticospinal sprouting occurs following a central dorsal column lesion in monkeys.

The Journal of comparative neurology | 2018

The corticospinal tract (CST) forms the major descending pathway mediating voluntary hand movements in primates, and originates from ∼nine cortical subdivisions in the macaque. While the terminals of spared motor CST axons are known to sprout locally within the cord in response to spinal injury, little is known about the response of the other CST subcomponents. We previously reported that following a cervical dorsal root lesion (DRL), the primary somatosensory (S1) CST terminal projection retracts to 60% of its original terminal domain, while the primary motor (M1) projection remains robust (Darian-Smith et al., J. Neurosci., 2013). In contrast, when a dorsal column lesion (DCL) is added to the DRL, the S1 CST, in addition to the M1 CST, extends its terminal projections bilaterally and caudally, well beyond normal range (Darian-Smith et al., J. Neurosci., 2014). Are these dramatic responses linked entirely to the inclusion of a CNS injury (i.e., DCL), or do the two components summate or interact? We addressed this directly, by comparing data from monkeys that received a unilateral DCL alone, with those that received either a DRL or a combined DRL/DCL. Approximately 4 months post-lesion, the S1 hand region was mapped electrophysiologically, and anterograde tracers were injected bilaterally into the region deprived of normal input, to assess spinal terminal labeling. Using multifactorial analyses, we show that following a DCL alone (i.e., cuneate fasciculus lesion), the S1 and M1 CSTs also sprout significantly and bilaterally beyond normal range, with a termination pattern suggesting some interaction between the peripheral and central lesions.

Pubmed ID: 30014461 RIS Download

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: R01 NS048425
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS091031
  • Agency: NINDS NIH HHS, United States
    Id: R56 NS048425

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Lucifer Yellow Polyclonal Antibody (antibody)

RRID:AB_2536190

This unknown targets Lucifer Yellow

View all literature mentions

Lucifer Yellow Polyclonal Antibody (antibody)

RRID:AB_2536190

This unknown targets Lucifer Yellow

View all literature mentions

Fiji (software resource)

RRID:SCR_002285

Software package as distribution of ImageJ and ImageJ2 together with Java, Java3D and plugins organized into coherent menu structure. Used to assist research in life sciences.

View all literature mentions

Neurolucida (software resource)

RRID:SCR_001775

Neurolucida is advanced scientific software for brain mapping, neuron reconstruction, anatomical mapping, and morphometry. Since its debut more than 20 years ago, Neurolucida has continued to evolve and has become the worldwide gold-standard for neuron reconstruction and 3D mapping. Neurolucida has the flexibility to handle data in many formats: using live images from digital or video cameras; stored image sets from confocal microscopes, electron microscopes, and scanning tomographic sources, or through the microscope oculars using the patented LucividTM. Neurolucida controls a motorized XYZ stage for integrated navigation through tissue sections, allowing for sophisticated analysis from many fields-of-view. Neurolucidas Serial Section Manager integrates unlimited sections into a single data file, maintaining each section in aligned 3D space for full quantitative analysis. Neurolucidas neuron tracing capabilities include 3D measurement and reconstruction of branching processes. Neurolucida also features sophisticated tools for mapping delineate and map anatomical regions for detailed morphometric analyses. Neurolucida uses advanced computer-controlled microscopy techniques to obtain accurate results and speed your work. Plug-in modules are available for confocal and MRI analysis, 3D solid modeling, and virtual slide creation. The user-friendly interface gives you rapid results, allowing you to acquire data and capture the full 3D extent of neurons and brain regions. You can reconstruct neurons or create 3D serial reconstructions directly from slides or acquired images, and Neurolucida offers full microscope control for brightfield, fluorescent, and confocal microscopes. Its added compatibility with 64-bit Microsoft Vista enables reconstructions with even larger images, image stacks, and virtual slides. Adding the Solid Modeling Module allows you to rotate and view your reconstructions in real time. Neurolucida is available in two separate versions Standard and Workstation. The Standard version enables control of microscope hardware, whereas the Workstation version is used for offline analysis away from the microscope. Neurolucida provides quantitative analysis with results presented in graphical or spreadsheet format exportable to Microsoft Excel. Overall, features include: - Tracing Neurons - Anatomical Mapping - Image Processing and Analysis Features - Editing - Morphometric Analysis - Hardware Integration - Cell Analysis - Visualization Features Sponsors: Neurolucida is supported by MBF Bioscience.

View all literature mentions