Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Heterogeneity of Cell Surface Glutamate and GABA Receptor Expression in Shank and CNTN4 Autism Mouse Models.

Frontiers in molecular neuroscience | 2018

Autism spectrum disorder (ASD) refers to a large set of neurodevelopmental disorders, which have in common both repetitive behavior and abnormalities in social interactions and communication. Interestingly, most forms of ASD have a strong genetic contribution. However, the molecular underpinnings of this disorder remain elusive. The SHANK3 gene (and to a lesser degree SHANK2) which encode for the postsynaptic density (PSD) proteins SHANK3/SHANK2 and the CONTACTIN 4 gene which encodes for the neuronal glycoprotein CONTACTIN4 (CNTN4) exhibit mutated variants which are associated with ASD. Like many of the other genes associated with ASD, both SHANKs and CNTN4 affect synapse formation and function and are therefore related to the proper development and signaling capability of excitatory and inhibitory neuronal networks in the adult mammal brain. In this study, we used mutant/knock-out mice of Shank2 (Shank2-/-), Shank3 (Shank3αβ-/-), and Cntn4 (Cntn4-/-) as ASD-models to explore whether these mice share a molecular signature in glutamatergic and GABAergic synaptic transmission in ASD-related brain regions. Using a biotinylation assay and subsequent western blotting we focused our analysis on cell surface expression of several ionotropic glutamate and GABA receptor subunits: GluA1, GluA2, and GluN1 were analyzed for excitatory synaptic transmission, and the α1 subunit of the GABAA receptor was analyzed for inhibitory synaptic transmission. We found that both Shank2-/- and Shank3αβ-/- mice exhibit reduced levels of several cell surface glutamate receptors in the analyzed brain regions-especially in the striatum and thalamus-when compared to wildtype controls. Interestingly, even though Cntn4-/- mice also show reduced levels of some cell surface glutamate receptors in the cortex and hippocampus, increased levels of cell surface glutamate receptors were found in the striatum. Moreover, Cntn4-/- mice do not only show brain region-specific alterations in cell surface glutamate receptors but also a downregulation of cell surface GABA receptors in several of the analyzed brain regions. The results of this study suggest that even though mutations in defined genes can be associated with ASD this does not necessarily result in a common molecular phenotype in surface expression of glutamatergic and GABAergic receptor subunits in defined brain regions.

Pubmed ID: 29970989 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ImageJ (tool)

RRID:SCR_003070

Open source Java based image processing software program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

View all literature mentions

NeuroMab (tool)

RRID:SCR_003086

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

View all literature mentions

Rabbit Anti-Metabotropic Glutamate Receptor 5 (mGluR5) , Unconjugated (antibody)

RRID:AB_2295173

This polyclonal targets Metabotropic Glutamate Receptor 5 (mGluR5)

View all literature mentions

Anti-GABA-A-R, Alpha1 Antibody (antibody)

RRID:AB_2108811

This monoclonal targets GABA(A)R, Alpha1

View all literature mentions

Anti-GluA 2 (antibody)

RRID:AB_10645888

This monoclonal targets GluA 2

View all literature mentions

Anti-GluA 1 (antibody)

RRID:AB_2113443

This monoclonal targets GluA 1

View all literature mentions

Anti-Glutamate Receptor NMDAR1 (NR1) antibody produced in rabbit (antibody)

RRID:AB_259978

This polyclonal targets Glutamate Receptor NMDAR1 (NR1) antibody produced in rabbit

View all literature mentions

Rabbit Anti-Metabotropic Glutamate Receptor 5 (mGluR5) , Unconjugated (antibody)

RRID:AB_2295173

This polyclonal targets Metabotropic Glutamate Receptor 5 (mGluR5)

View all literature mentions

Anti-GABA-A-R, Alpha1 Antibody (antibody)

RRID:AB_2108811

This monoclonal targets GABA(A)R, Alpha1

View all literature mentions

Anti-GluA 2 (antibody)

RRID:AB_10645888

This monoclonal targets GluA 2

View all literature mentions

Anti-GluA 1 (antibody)

RRID:AB_2113443

This monoclonal targets GluA 1

View all literature mentions

Anti-Glutamate Receptor NMDAR1 (NR1) antibody produced in rabbit (antibody)

RRID:AB_259978

This polyclonal targets Glutamate Receptor NMDAR1 (NR1) antibody produced in rabbit

View all literature mentions