Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

[18F]FMPEP-d2 PET imaging shows age- and genotype-dependent impairments in the availability of cannabinoid receptor 1 in a mouse model of Alzheimer's disease.

Neurobiology of aging | May 18, 2018

Contradictory findings on the role of the type 1 cannabinoid receptor (CB1R) during the pathogenesis of Alzheimer's disease (AD) have been reported. Here, we evaluated the CB1R brain profile in an AD mouse model using longitudinal positron emission tomography with an inverse agonist for CB1R, [18F]FMPEP-d2. APP/PS1-21 and wild-type (n = 8 in each group) mice were repeatedly imaged between 6 to 15 months of age, accompanied by brain autoradiography, western blot, and CB1R immunohistochemistry with additional mice. [18F]FMPEP-d2 positron emission tomography demonstrated lower (p < 0.05) binding ratios in the parietotemporal cortex and hippocampus of APP/PS1-21 mice compared with age-matched wild-type mice. Western blot demonstrated no differences between APP/PS1-21 and wild-type mice in the CB1R abundance, whereas significantly lower (p < 0.05) receptor expression was observed in male than female mice. The results provide the first demonstration that [18F]FMPEP-d2 is a promising imaging tool for AD research in terms of CB1R availability, but not expression. This finding may further facilitate the development of novel therapeutic approaches based on endocannabinoid regulation.

Pubmed ID: 29909177 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.