Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Ischemic Brain Injury Leads to Brain Edema via Hyperthermia-Induced TRPV4 Activation.

The Journal of neuroscience : the official journal of the Society for Neuroscience | 2018

Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain largely unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which male mouse brain slices were treated with oxygen-glucose deprivation (OGD) to mimic ischemia. We continuously measured the cross-sectional area of the brain slice for 150 min under macroscopic microscopy, finding that OGD induces swelling of brain slices. OGD-induced swelling was prevented by pharmacologically blocking or genetically knocking out the transient receptor potential vanilloid 4 (TRPV4), a member of the thermosensitive TRP channel family. Because TRPV4 is activated at around body temperature and its activation is enhanced by heating, we next elevated the temperature of the perfusate in the recording chamber, finding that hyperthermia induces swelling via TRPV4 activation. Furthermore, using the temperature-dependent fluorescence lifetime of a fluorescent-thermosensitive probe, we confirmed that OGD treatment increases the temperature of brain slices through the activation of glutamate receptors. Finally, we found that brain edema following traumatic brain injury was suppressed in TRPV4-deficient male mice in vivo Thus, our study proposes a novel mechanism: hyperthermia activates TRPV4 and induces brain edema after ischemia.SIGNIFICANCE STATEMENT Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which mouse brain slices were treated with oxygen-glucose deprivation. Using this system, we showed that the increase in brain temperature and the following activation of the thermosensitive cation channel TRPV4 (transient receptor potential vanilloid 4) are involved in the pathology of edema. Finally, we confirmed that TRPV4 is involved in brain edema in vivo using TRPV4-deficient mice, concluding that hyperthermia activates TRPV4 and induces brain edema after ischemia.

Pubmed ID: 29793978 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-NeuN (antibody)

RRID:AB_2298772

This monoclonal targets NeuN

View all literature mentions

Anti-Iba1 antibody (antibody)

RRID:AB_2728648

This polyclonal targets Iba1

View all literature mentions

Anti-Glial Fibrillary Acidic Protein (GFAP) (antibody)

RRID:AB_2109645

This polyclonal targets Glial Fibrillary Acidic Protein (GFAP)

View all literature mentions

SigmaPlot (software resource)

RRID:SCR_003210

Statistical analysis and scientific graphing software for Windows OS.

View all literature mentions

Olympus cellSens Software (software resource)

RRID:SCR_014551

Software suite for image acquisition and analysis. The software can be paired with high-quality cameras to maximize output quality and export it for sharing and research applications.

View all literature mentions

Olympus FV1200 (software resource)

RRID:SCR_016264

THIS RESOURCE HAS BEEN DISCONTINUED. Documented May 7, 2018. Software module for biological confocal laser scanning microscope FV 1200. Olympus's proprietary super resolution technology FV - OSR (Olympus Super Resolution) realizes XY resolution of about 120 nm exceeding the conventional 3D confocal microscope.

View all literature mentions

SymPhoTime 64 (software resource)

RRID:SCR_016263

Software for fluorescence lifetime imaging and correlation. SymPhoTime 64 is the data acquisition software for PicoQuant's time-resolved confocal microscope MicroTime 200 and LSM upgrade kits.

View all literature mentions

GraphPad Prism (software resource)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions

ImageJ (software resource)

RRID:SCR_003070

Open source Java based image processing software program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

View all literature mentions

C57BL/6J (organism)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

SigmaPlot (software resource)

RRID:SCR_003210

Statistical analysis and scientific graphing software for Windows OS.

View all literature mentions