Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Methylglyoxal Disrupts Paranodal Axoglial Junctions via Calpain Activation.

ASN neuro | 2018

Nodes of Ranvier and associated paranodal and juxtaparanodal domains along myelinated axons are essential for normal function of the peripheral and central nervous systems. Disruption of these domains as well as increases in the reactive carbonyl species methylglyoxal are implicated as a pathophysiology common to a wide variety of neurological diseases. Here, using an ex vivo nerve exposure model, we show that increasing methylglyoxal produces paranodal disruption, evidenced by disorganized immunostaining of axoglial cell-adhesion proteins, in both sciatic and optic nerves from wild-type mice. Consistent with previous studies showing that increase of methylglyoxal can alter intracellular calcium homeostasis, we found upregulated activity of the calcium-activated protease calpain in sciatic nerves after methylglyoxal exposure. Methylglyoxal exposure altered clusters of proteins that are known as calpain substrates: ezrin in Schwann cell microvilli at the perinodal area and zonula occludens 1 in Schwann cell autotypic junctions at paranodes. Finally, treatment with the calpain inhibitor calpeptin ameliorated methylglyoxal-evoked ezrin loss and paranodal disruption in both sciatic and optic nerves. Our findings strongly suggest that elevated methylglyoxal levels and subsequent calpain activation contribute to the disruption of specialized axoglial domains along myelinated nerve fibers in neurological diseases.

Pubmed ID: 29673258 RIS Download

Research resources used in this publication

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

Thermo Fisher Scientific (tool)

RRID:SCR_008452

Commercial vendor and service provider of laboratory reagents and antibodies. Supplier of scientific instrumentation, reagents and consumables, and software services.

View all literature mentions

NeuroMab (tool)

RRID:SCR_003086

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

View all literature mentions

PRISM (tool)

RRID:SCR_005375

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role.

View all literature mentions

Human/Mouse/Rat Neurofascin Affinity Purified Polyclonal Ab (antibody)

RRID:AB_10890736

This unknown targets Human/Mouse/Rat Neurofascin Affinity Purified Ab

View all literature mentions

anti-beta IV spectrin (antibody)

RRID:AB_2315634

This polyclonal targets SD domain of beta IV spectrin

View all literature mentions

Caspr antibody (antibody)

RRID:AB_869934

This polyclonal targets Rat Caspr

View all literature mentions

Ezrin (3C12) (antibody)

RRID:AB_783303

This monoclonal targets Ezrin (3C12)

View all literature mentions

Anti-Kv1.2 K+ Channel Antibody (antibody)

RRID:AB_2296313

This monoclonal targets Kv1.2 K+ channel

View all literature mentions

Anti-Ankyrin-G (Staining) Antibody (antibody)

RRID:AB_10673030

This monoclonal targets Ankyrin-G (Staining)

View all literature mentions

C57BL/6J (organism)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

GraphPad Prism (software resource)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions

ANOVA (software resource)

RRID:SCR_002427

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 12,2023. Matlab code for two-factor (location and year) analysis-of-variance model for the calculation of climate anomalies, in which the reference interval is specified as the full length of the dataset. This scheme avoids the affects of shorter (e.g. 1961-1990) reference intervals on the temporal evolution of the spatial standard deviation of climate anomalies. Data files provided.

View all literature mentions

Human/Mouse/Rat Neurofascin Affinity Purified Polyclonal Ab (antibody)

RRID:AB_10890736

This unknown targets Human/Mouse/Rat Neurofascin Affinity Purified Ab

View all literature mentions

anti-beta IV spectrin (antibody)

RRID:AB_2315634

This polyclonal targets SD domain of beta IV spectrin

View all literature mentions

Caspr antibody (antibody)

RRID:AB_869934

This polyclonal targets Rat Caspr

View all literature mentions

Ezrin (3C12) (antibody)

RRID:AB_783303

This monoclonal targets Ezrin (3C12)

View all literature mentions

Anti-Kv1.2 K+ Channel Antibody (antibody)

RRID:AB_2296313

This monoclonal targets Kv1.2 K+ channel

View all literature mentions

Anti-Ankyrin-G (Staining) Antibody (antibody)

RRID:AB_10673030

This monoclonal targets Ankyrin-G (Staining)

View all literature mentions

C57BL/6J (organism)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

anti-beta IV spectrin (antibody)

RRID:AB_2315634

This polyclonal targets SD domain of beta IV spectrin

View all literature mentions

Human/Mouse/Rat Neurofascin Affinity Purified Polyclonal Ab (antibody)

RRID:AB_10890736

This unknown targets Human/Mouse/Rat Neurofascin Affinity Purified Ab

View all literature mentions

Ezrin (3C12) (antibody)

RRID:AB_783303

This monoclonal targets Ezrin (3C12)

View all literature mentions

Caspr antibody (antibody)

RRID:AB_869934

This polyclonal targets Rat Caspr

View all literature mentions

Anti-Kv1.2 K+ Channel Antibody (antibody)

RRID:AB_2296313

This monoclonal targets Kv1.2 K+ channel

View all literature mentions

Anti-Ankyrin-G (Staining) Antibody (antibody)

RRID:AB_10673030

This monoclonal targets Ankyrin-G (Staining)

View all literature mentions

C57BL/6J (organism)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions