Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Two Behavioral Tests Allow a Better Correlation Between Cognitive Function and Expression of Synaptic Proteins.

Frontiers in aging neuroscience | 2018

The molecular substrate of age-associated cognitive decline (AACD) is still elusive. Evidence indicates that AACD is related to synaptic impairment in hippocampus, but different hippocampal regions play different roles, with the dorsal hippocampus (DH) associated to spatial learning, and the ventral hippocampus (VH) crucial for emotionality. If changes in hippocampal function contributes to AACD, this contribution may be reflected in alterations of synaptic protein levels. A commonly used approach to investigate this issue is western blotting. When this technique is applied to the entire hippocampus and the cognitive impairment is evaluated by a single task, changes in expression of a protein might undergo a "dilution effect", as they may occur only in a given hippocampal region. We show that two behavioral tests yield more accurate results than one test in evaluating the function of the whole rat hippocampus by studying the expression of synaptotagmin 1 (SYT1), a vesicular protein whose expression in aged hippocampus is reportedly inconsistent. Analysis of SYT1 levels in the whole hippocampus of rats selected by the Morris water maze (MWM) test only failed to highlight a difference, whereas analysis of SYT1 levels in the whole hippocampus of rats categorized by both the MWM and the step-through passive avoidance (STPA) tests demonstrated a significant increase of SYT1 level in impaired rats. These findings, besides showing that SYT1 increases in impaired aged rats, suggest that using the whole hippocampus in blotting studies may prevent false negative results only if animals are categorized with tests exploring both DH and VH.

Pubmed ID: 29670520 RIS Download

Additional research tools detected in this publication

None found

Antibodies used in this publication

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-Synaptotagmin 1 (antibody)

RRID:AB_887832

This monoclonal targets Synaptotagmin 1 (cytoplasmic tail)

View all literature mentions

Anti-Synaptotagmin 1 (antibody)

RRID:AB_887832

This monoclonal targets Synaptotagmin 1 (cytoplasmic tail)

View all literature mentions

Anti-Synaptotagmin 1 (antibody)

RRID:AB_887832

This monoclonal targets Synaptotagmin 1 (cytoplasmic tail)

View all literature mentions