Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport.

Cell host & microbe | Apr 11, 2018

The HIV-1 core consists of capsid proteins (CA) surrounding viral genomic RNA. After virus-cell fusion, the core enters the cytoplasm and the capsid shell is lost through uncoating. CA loss precedes nuclear import and HIV integration into the host genome, but the timing and location of uncoating remain unclear. By visualizing single HIV-1 infection, we find that CA is required for core docking at the nuclear envelope (NE), whereas early uncoating in the cytoplasm promotes proteasomal degradation of viral complexes. Only docked cores exhibiting accelerated loss of CA at the NE enter the nucleus. Interestingly, a CA mutation (N74D) altering virus engagement of host factors involved in nuclear transport does not alter the uncoating site at the NE but reduces the nuclear penetration depth. Thus, CA protects HIV-1 complexes from degradation, mediates docking at the nuclear pore before uncoating, and determines the depth of nuclear penetration en route to integration.

Pubmed ID: 29649444 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


icy

An open community platform for bioimage informatics providing the software resources to visualize, annotate and quantify bioimaging data. To bridge the gap between developers and users, it combines: a) an open-source image analysis software, offering a powerful and flexible environment for developers such as applied mathematicians to write algorithms fast and efficiently; b) a common set of tools to view and manipulate data, and a set of plugins to perform specific quantification or analysis on images; c) a community-based website centralizing all plugins and resources to facilitate their management and maximize their visibility towards users. Workspaces are virtual groups of plugins dedicated to a specific application or image processing domain. By downloading a workspace, ICY automatically installs all corresponding plugins. The workspaces are enabled, but the editing section is not ready yet. If you want to publish a plugin on this website, its code has to be GPL. Source code is available and provided in each application download.

tool

View all literature mentions

ImageJ

Software tool as an open source Java-based image processing program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

tool

View all literature mentions