Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Adult Neurogenesis Is Sustained by Symmetric Self-Renewal and Differentiation.

Cell stem cell | Feb 1, 2018

Somatic stem cells have been identified in multiple adult tissues. Whether self-renewal occurs symmetrically or asymmetrically is key to understanding long-term stem cell maintenance and generation of progeny for cell replacement. In the adult mouse brain, neural stem cells (NSCs) (B1 cells) are retained in the walls of the lateral ventricles (ventricular-subventricular zone [V-SVZ]). The mechanism of B1 cell retention into adulthood for lifelong neurogenesis is unknown. Using multiple clonal labeling techniques, we show that the vast majority of B1 cells divide symmetrically. Whereas 20%-30% symmetrically self-renew and can remain in the niche for several months before generating neurons, 70%-80% undergo consuming divisions generating progeny, resulting in the depletion of B1 cells over time. This cellular mechanism decouples self-renewal from the generation of progeny. Limited rounds of symmetric self-renewal and consuming symmetric differentiation divisions can explain the levels of neurogenesis observed throughout life.

Pubmed ID: 29395056 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Neurolucida

Neurolucida is advanced scientific software for brain mapping, neuron reconstruction, anatomical mapping, and morphometry. Since its debut more than 20 years ago, Neurolucida has continued to evolve and has become the worldwide gold-standard for neuron reconstruction and 3D mapping. Neurolucida has the flexibility to handle data in many formats: using live images from digital or video cameras; stored image sets from confocal microscopes, electron microscopes, and scanning tomographic sources, or through the microscope oculars using the patented LucividTM. Neurolucida controls a motorized XYZ stage for integrated navigation through tissue sections, allowing for sophisticated analysis from many fields-of-view. Neurolucidas Serial Section Manager integrates unlimited sections into a single data file, maintaining each section in aligned 3D space for full quantitative analysis. Neurolucidas neuron tracing capabilities include 3D measurement and reconstruction of branching processes. Neurolucida also features sophisticated tools for mapping delineate and map anatomical regions for detailed morphometric analyses. Neurolucida uses advanced computer-controlled microscopy techniques to obtain accurate results and speed your work. Plug-in modules are available for confocal and MRI analysis, 3D solid modeling, and virtual slide creation. The user-friendly interface gives you rapid results, allowing you to acquire data and capture the full 3D extent of neurons and brain regions. You can reconstruct neurons or create 3D serial reconstructions directly from slides or acquired images, and Neurolucida offers full microscope control for brightfield, fluorescent, and confocal microscopes. Its added compatibility with 64-bit Microsoft Vista enables reconstructions with even larger images, image stacks, and virtual slides. Adding the Solid Modeling Module allows you to rotate and view your reconstructions in real time. Neurolucida is available in two separate versions Standard and Workstation. The Standard version enables control of microscope hardware, whereas the Workstation version is used for offline analysis away from the microscope. Neurolucida provides quantitative analysis with results presented in graphical or spreadsheet format exportable to Microsoft Excel. Overall, features include: - Tracing Neurons - Anatomical Mapping - Image Processing and Analysis Features - Editing - Morphometric Analysis - Hardware Integration - Cell Analysis - Visualization Features Sponsors: Neurolucida is supported by MBF Bioscience.

tool

View all literature mentions

Wolfram Mathematica

A technical computing software and computing environment that provides users with algorithms and mathematical functions for various projects and purposes. The resource incorporates other Wolfram products such as Wolfram Algorithmbase, Wolfram Language, and Wolfram Knowledgebase.

tool

View all literature mentions