Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines.

The Journal of neuroscience : the official journal of the Society for Neuroscience | 2018

The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT(BAC)-Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT(IRES)-Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT(BAC)-Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT(BAC)-Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT(IRES)-Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT(IRES)-Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT(IRES)-Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT(IRES)-Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations.SIGNIFICANCE STATEMENT Altered baseline and/or nicotine-mediated behavioral profiles were discovered in transgenic mice from the ChAT(BAC)-Cre and ChAT(IRES)-Cre lines. Given that these cre-expressing mice have become increasingly used by the scientific community, either independently with chemicogenetic and optogenetic viral vectors or crossed with other transgenic lines, the current studies highlight important considerations for the interpretation of data from previous and future experimental investigations. Moreover, the current findings detail the behavioral effects of either increased or decreased baseline cholinergic signaling mechanisms on locomotor, anxiety, learning/memory, and intravenous nicotine self-administration behaviors.

Pubmed ID: 29371319 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Mutant Mouse Resource and Research Center (tool)

RRID:SCR_002953

National public repository system for mutant mice. Archives and distributes scientifically valuable spontaneous and induced mutant mouse strains and ES cell lines for use by biomedical research community. Includes breeding/distribution facilities and information coordinating center. Mice strains are cryopreserved, unless live colony must be established. Live mice are supplied from production colony, from colony recovered from cryopreservation, or via micro-injection of cell line into host blastocysts. MMRRC member facilities also develop technologies to improve handling of mutant mice, including advances in assisted reproductive techniques, cryobiology, genetic analysis, phenotyping and infectious disease diagnostics.

View all literature mentions

University of California at Davis Mutant Mouse Resource and Research Center (tool)

RRID:SCR_016448

Center that imports, archives, maintains, and distributes mutant mouse alleles as live mice, frozen germplasm, stem cells, and molecular vectors for use in biomedical research. The MMRRC Davis receives transgenics, knockouts, and other kinds of mutant mouse lines at no cost to the donor, and after re-derivation and cryopreservation, distributes breeding stock, germplasm, cells, or tissues of genetically-defined and pathogen-free mice for a small fee to requesting investigators.

View all literature mentions

Cre (antibody)

RRID:AB_2314229

This unknown targets

View all literature mentions

Anti-Cre Antibody (antibody)

RRID:AB_10806983

This polyclonal targets Cre

View all literature mentions

Anti-Choline Acetyltransferase Antibody (antibody)

RRID:AB_2079751

This polyclonal targets Choline Acetyltransferase

View all literature mentions

VAChT (N-19) (antibody)

RRID:AB_2301794

This polyclonal targets SLC18A3

View all literature mentions

B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J (organism)

RRID:IMSR_JAX:007914

Mus musculus with name B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J from IMSR.

View all literature mentions

B6;129S6-Chattm2(cre)Lowl/J (organism)

RRID:IMSR_JAX:006410

Mus musculus with name B6;129S6-Chattm2(cre)Lowl/J from IMSR.

View all literature mentions

B6.FVB(Cg)-Tg(Chat-cre)GM60Gsat/Mmucd (organism)

RRID:MMRRC_030869-UCD

Mus musculus with name B6.FVB(Cg)-Tg(Chat-cre)GM60Gsat/Mmucd from MMRRC.

View all literature mentions