Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Human CRL4DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1.

Oncotarget | 2017

Acetylated histone H3 lysine 56 (H3K56Ac) diminishes in response to DNA damage but is restored following DNA repair. Here, we report that CRL4DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1. We show that H3K56Ac accumulates at DNA damage sites. The restoration of H3K56Ac but not H3K27Ac, H3K18Ac and H3K14Ac depends on CAF-1 function, whereas all these acetylations are mediated by CBP/p300. The CRL4DDB2 components, DDB1, DDB2 and CUL4A, are also required for maintaining the H3K56Ac and H3K9Ac level in chromatin, and for restoring H3K56Ac following induction of DNA photolesions and strand breaks. Depletion of CUL4A decreases the recruitment of CAF-1 p60 and p150 to ultraviolet radiation- and phleomycin-induced DNA damage. Neddylation inhibition renders CRL4DDB2 inactive, decreases H3K56Ac level, diminishes CAF-1 recruitment and prevents H3K56Ac restoration. Mutation in the PIP box of DDB2 compromises its capability to elevate the H3K56Ac level but does not affect XPC ubiquitination. These results demonstrated a function of CRL4DDB2 in differential regulation of histone acetylation in response to DNA damage, suggesting a novel role of CRL4DDB2 in repair-driven chromatin assembly.

Pubmed ID: 29262658 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: P30 CA016058
  • Agency: NIEHS NIH HHS, United States
    Id: R01 ES002388
  • Agency: NIEHS NIH HHS, United States
    Id: R01 ES012991

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SigmaPlot (tool)

RRID:SCR_003210

Statistical analysis and scientific graphing software for Windows OS.

View all literature mentions

SPOT - Biological prioritization after a SNP association study (tool)

RRID:SCR_005193

A web-based tool for using biological databases to prioritize single nucleotide polymorphisms (SNPs) after a genome-wide association study (GWAS). The site allows users to upload a list of SNPs and GWAS P-values and returns a prioritized list of SNPs using the GIN method. Users can specify candidate genes or genomic regions with custom levels of prioritization. The results can be downloaded or viewed in the browser where users can interactively explore the details of each SNP, including graphical representations of the genomic information network (GIN) method. For investigators interested in incorporating biological databases into a post-GWAS SNP selection strategy, the SPOT web tool is an easily implemented and flexible solution.

View all literature mentions

HeLa (tool)

RRID:CVCL_0030

Cell line HeLa is a Cancer cell line with a species of origin Homo sapiens

View all literature mentions