Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Inactivation of NMDA Receptors in the Ventral Tegmental Area during Cocaine Self-Administration Prevents GluA1 Upregulation but with Paradoxical Increases in Cocaine-Seeking Behavior.

The Journal of neuroscience : the official journal of the Society for Neuroscience | 2018

Cocaine self-administration increases expression of GluA1 subunits in ventral tegmental area (VTA) dopamine neurons, which subsequently enhance the motivation for cocaine. This increase in GluA1 may be dependent on concomitant NMDA receptor (NMDAR) activation during self-administration, similar to cocaine-induced long-term potentiation in the VTA. In this study, we used viral-mediated expression of a dominant-negative GluN1 subunit (HSV-dnGluN1) in VTA neurons to study the effect of transient NMDAR inactivation on the GluA1 increases induced by chronic cocaine self-administration in male rats. We found that dnGluN1 expression in the VTA limited to the 3 weeks of cocaine self-administration prevents the subsequent increase in tissue GluA1 levels when compared with control infusions of HSV-LacZ. Surprisingly, dnGluN1 expression led to an enhancement in the motivation to self-administer cocaine as measured using a progressive ratio reinforcement schedule and to enhanced cocaine seeking measured in extinction/reinstatement tests following an extended 3 week withdrawal period. Despite blocking tissue GluA1 increases in cocaine self-administering animals, the HSV-dnGluN1 treatment resulted in increased membrane levels of GluA1 and GluN2B, along with markedly higher locomotor responses to intra-VTA infusions of AMPA, suggesting a paradoxical increase in VTA AMPA receptor responsiveness. Together, these data suggest that NMDARs mediate cocaine-induced increases in VTA GluA1 expression, but such transient NMDAR inactivation also leads to compensatory scaling of synaptic AMPA receptors that enhance the motivational for cocaine.SIGNIFICANCE STATEMENT Dopamine neurons in the ventral tegmental area (VTA) are critical substrates of drug rewards. Animal models indicate that chronic cocaine use enhances excitatory glutamatergic input to these neurons, making them more susceptible to environmental stimuli that trigger drug craving and relapse. We previously found that self-administration of cocaine increases AMPA glutamate receptors in the VTA, and this effect enhances motivation for cocaine. Here we report that the mechanism for this upregulation involves NMDA receptor activity during cocaine use. While interference with NMDA receptor function blocks AMPA receptor upregulation, it also produces a paradoxical enhancement in membrane AMPA receptor subunits, AMPA responsiveness, and the motivation for cocaine. Thus, pharmacotherapy targeting NMDA receptors may inadvertently produce substantial adverse consequences for cocaine addiction.

Pubmed ID: 29196318 RIS Download

Associated grants

  • Agency: NIDA NIH HHS, United States
    Id: F31 DA035073
  • Agency: NIDA NIH HHS, United States
    Id: T32 DA007290
  • Agency: NIMH NIH HHS, United States
    Id: R21 MH112081
  • Agency: NIAAA NIH HHS, United States
    Id: R01 AA022445
  • Agency: NIDA NIH HHS, United States
    Id: R01 DA032708
  • Agency: NIDA NIH HHS, United States
    Id: P01 DA008227
  • Agency: NIDA NIH HHS, United States
    Id: R01 DA018743

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (E10) Mouse mAb (antibody)

RRID:AB_331768

This monoclonal targets Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (E10) Mouse mAb

View all literature mentions

p44/42 MAPK (Erk1/2) Antibody (antibody)

RRID:AB_330744

This polyclonal targets p44/42 MAPK (Erk1/2)

View all literature mentions

Anti-NR3A (antibody)

RRID:AB_2112620

This polyclonal targets GRIN3A

View all literature mentions

GluR2 (antibody)

RRID:AB_2313802

This unknown targets

View all literature mentions

Anti-NR1 Antibody, CT, (antibody)

RRID:AB_390129

This monoclonal targets NR1

View all literature mentions

Normal Donkey Serum (antibody)

RRID:AB_2337258

This unknown targets Donkey Serum

View all literature mentions

Anti-Tyrosine Hydroxylase Antibody (antibody)

RRID:AB_390204

This polyclonal targets Tyrosine Hydroxylase

View all literature mentions

NIH Image (software resource)

RRID:SCR_003073

Public image processing and analysis program for Macintosh.

View all literature mentions

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (E10) Mouse mAb (antibody)

RRID:AB_331768

This monoclonal targets Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (E10) Mouse mAb

View all literature mentions

p44/42 MAPK (Erk1/2) Antibody (antibody)

RRID:AB_330744

This polyclonal targets p44/42 MAPK (Erk1/2)

View all literature mentions