Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages.

Immunity | Nov 21, 2017

Alveolar macrophages (AMs) derive from fetal liver monocytes, which colonize the lung during embryonic development and give rise to fully mature AMs perinatally. AM differentiation requires granulocyte macrophage colony-stimulating factor (GM-CSF), but whether additional factors are involved in AM regulation is not known. Here we report that AMs, in contrast to most other tissue macrophages, were also dependent on transforming growth factor-β receptor (TGF-βR) signaling. Conditional deletion of TGF-βR in mice at different time points halted the development and differentiation of AMs. In adult mice, TGF-β was also critical for AM homeostasis. The source of TGF-β was AMs themselves, indicative of an autocrine loop that promotes AM self-maintenance. Mechanistically, TGF-βR signaling resulted in upregulation of PPAR-γ, a signature transcription factor essential for the development of AMs. These findings reveal an additional layer of complexity regarding the guidance cues, which govern the genesis, maturation, and survival of AMs.

Pubmed ID: 29126797 RIS Download

Mesh terms: Animals | Cell Differentiation | Embryonic Development | Homeostasis | Macrophages, Alveolar | Mice | Mice, Inbred C57BL | Receptors, Transforming Growth Factor beta | Signal Transduction | Transcriptome | Transforming Growth Factor beta

Research resources used in this publication

Research tools detected in this publication

Data used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


IMPC

Center that produces knockout mice and carries out high-throughput phenotyping of each line in order to determine the function of every gene in the mouse genome. These mice will be preserved in repositories and made available to the scientific community representing a valuable resource for basic scientific research as well as generating new models for human diseases.

tool

View all literature mentions