Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A cautionary tale of sense-antisense gene pairs: independent regulation despite inverse correlation of expression.

Nucleic acids research | 2017

Long non-coding RNAs (lncRNAs) have been proven to play important roles in diverse cellular processes including the DNA damage response. Nearly 40% of annotated lncRNAs are transcribed in antisense direction to other genes and have often been implicated in their regulation via transcript- or transcription-dependent mechanisms. However, it remains unclear whether inverse correlation of gene expression would generally point toward a regulatory interaction between the genes. Here, we profiled lncRNA and mRNA expression in lung and liver cancer cells after exposure to DNA damage. Our analysis revealed two pairs of mRNA-lncRNA sense-antisense transcripts being inversely expressed upon DNA damage. The lncRNA NOP14-AS1 was strongly upregulated upon DNA damage, while the mRNA for NOP14 was downregulated, both in a p53-dependent manner. For another pair, the lncRNA LIPE-AS1 was downregulated, while its antisense mRNA CEACAM1 was upregulated. To test whether as expected the antisense genes would regulate each other resulting in this highly significant inverse correlation, we employed antisense oligonucleotides and RNAi to study transcript-dependent effects as well as dCas9-based transcriptional modulation by CRISPRi/CRISPRa for transcription-dependent effects. Surprisingly, despite the strong stimulus-dependent inverse correlation, our data indicate that neither transcript- nor transcription-dependent mechanisms explain the inverse regulation of NOP14-AS1:NOP14 or LIPE-AS1:CEACAM1 expression. Hence, sense-antisense pairs whose expression is strongly-positively or negatively-correlated can be nonetheless regulated independently. This highlights the requirement of individual experimental studies for each antisense pair and prohibits drawing conclusions on regulatory mechanisms from expression correlations.

Pubmed ID: 29059299 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


UCSC Genome Browser (tool)

RRID:SCR_005780

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

View all literature mentions

AppliChem (tool)

RRID:SCR_005814

An Antibody supplier

View all literature mentions

NCI-H460 (tool)

RRID:CVCL_0459

Cell line NCI-H460 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

A-549 (tool)

RRID:CVCL_0023

Cell line A-549 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

Hep-G2 (tool)

RRID:CVCL_0027

Cell line Hep-G2 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

MCF-7 (tool)

RRID:CVCL_0031

Cell line MCF-7 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions