Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Heterophilic Type II Cadherins Are Required for High-Magnitude Synaptic Potentiation in the Hippocampus.

Neuron | Sep 27, 2017

Hippocampal CA3 neurons form synapses with CA1 neurons in two layers, stratum oriens (SO) and stratum radiatum (SR). Each layer develops unique synaptic properties but molecular mechanisms that mediate these differences are unknown. Here, we show that SO synapses normally have significantly more mushroom spines and higher-magnitude long-term potentiation (LTP) than SR synapses. Further, we discovered that these differences require the Type II classic cadherins, cadherins-6, -9, and -10. Though cadherins typically function via trans-cellular homophilic interactions, our results suggest presynaptic cadherin-9 binds postsynaptic cadherins-6 and -10 to regulate mushroom spine density and high-magnitude LTP in the SO layer. Loss of these cadherins has no effect on the lower-magnitude LTP typically observed in the SR layer, demonstrating that cadherins-6, -9, and -10 are gatekeepers for high-magnitude LTP. Thus, Type II cadherins may uniquely contribute to the specificity and strength of synaptic changes associated with learning and memory.

Pubmed ID: 28957665 RIS Download

Mesh terms: Animals | CA1 Region, Hippocampal | Cadherins | Cells, Cultured | Cricetinae | Electric Stimulation | Excitatory Postsynaptic Potentials | Female | Humans | Long-Term Potentiation | Male | Mice | Mice, Knockout | Mice, Transgenic | Neurons | Rats | Synapses

Research resources used in this publication

Research tools detected in this publication

Data used in this publication

None found

Associated grants

  • Agency: NEI NIH HHS, Id: R01 EY022073

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Imaris

Interactive Vision In The Life SciencesCombining speed, precision and ease-of-use, Imaris provides an impressive range of capabilities for working with three-dimensional images. Move easily between simple and advanced 3D views. Use flexible editing and processing functions, such as interactive surface rendering and object slicing capabilities. And output to standard TIFF, Quicktime and AVI formats. Imaris accepts virtually all image formats that are used in confocal microscopy and many of those used in wide-field image acquisition.BitPlane, Inc. also releases the following companion products:- ImarisXT is a multi-functional two-way interface from Imaris to both classic programming languages and to Matlab.- Imaris MeasurementPro and Imaris Track provide the ability to segment and follow the movement of independent objects in a 3D image over time. Objects can either be Surface Objects or Spots, created automatically or manually.- ImarisColoc enables users to easily isolate, visualize, and quantify regional overlap in 3D and 4D images and automates the process of selecting colocalized image areas.

tool

View all literature mentions

pClamp

Commercial patch clamp software from Molecular Devices.

tool

View all literature mentions

AutoQuant

Advanced image deconvolution and 3D visualization software for Life Science Researchers.

tool

View all literature mentions

Fiji

An image processing package described as a distribution of ImageJ (and ImageJ2) together with Java, Java3D and a lot of plugins organized into a coherent menu structure. The main focus of Fiji is to assist research in life sciences.

tool

View all literature mentions

Graphpad Prism

Statistical software package for data analysis, hypothesis testing, and modeling. The software can capable perform mathematical calculations (including biostatistics) and graphical plotting such as curve fitting (nonlinear regression) and scientific graphing.

tool

View all literature mentions