Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

mBio | 2017

Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia (Alphaproteobacteria; Rickettsiaceae). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell.IMPORTANCE A hallmark of obligate intracellular bacteria is the tradeoff of metabolic genes for the ability to acquire host metabolites. For species of Rickettsia, arthropod-borne parasites with the potential to cause serious human disease, the range of pilfered host metabolites is unknown. This information is critical for dissociating rickettsiae from eukaryotic cells to facilitate rickettsial genetic manipulation. In this study, we reconstructed the Rickettsia metabolic network and identified 51 host metabolites required to compensate patchwork Rickettsia biosynthesis pathways. Remarkably, some metabolites are not known to be transported by any bacteria, and overall, few cognate transporters were identified. Several pathways contain missing enzymes, yet similar pathways in unrelated bacteria indicate convergence and possible novel enzymes awaiting characterization. Our work illuminates the parasitic nature by which rickettsiae hijack host metabolism to counterbalance numerous disintegrated biosynthesis pathways that have arisen through evolution within the eukaryotic cell. This metabolic blueprint reveals what a Rickettsia axenic medium might entail.

Pubmed ID: 28951473 RIS Download

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: R01 AI126853
  • Agency: NIAID NIH HHS, United States
    Id: T32 AI095190
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI017828
  • Agency: NIAID NIH HHS, United States
    Id: T32 AI007540
  • Agency: NIAID NIH HHS, United States
    Id: R21 AI126108

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Transporter Classification Database (tool)

RRID:SCR_004490

Curated, relational database containing sequence, classification, structural, functional and evolutionary information about transport systems from variety of living organisms based on IUBMB-approved transporter classification (TC) system. Descriptions, TC numbers, and examples of over 600 families of transport proteins are provided. TC system is analogous to Enzyme Commission (EC) system for classification of enzymes, except that it incorporates both functional and phylogenetic information. TCDB users may submit their own sequenced proteins and descriptions for inclusion into database. The software tools used are all freely available for download. These programs are used for analysis of Protein and DNA sequences. Programs require UNIX server to run.

View all literature mentions

Pathosystems Resource Integration Center (tool)

RRID:SCR_004154

A Bioinformatics Resource Center bacterial bioinformatics database and analysis resource that provides researchers with an online resource that stores and integrates a variety of data types (e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data) and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. The PATRIC project includes three primary collaborators: the University of Chicago, the University of Manchester, and New City Media. The University of Chicago is providing genome annotations and a PATRIC end-user genome annotation service using their Rapid Annotation using Subsystem Technology (RAST) system. The National Centre for Text Mining (NaCTeM) at the University of Manchester is providing literature-based text mining capability and service. New City Media is providing assistance in website interface development. An FTP server and download tool are available.

View all literature mentions

RAxML (tool)

RRID:SCR_006086

Software program for phylogenetic analyses of large datasets under maximum likelihood.

View all literature mentions

PhyloBayes (tool)

RRID:SCR_006402

A Bayesian Monte Carlo Markov Chain (MCMC) sampler software for phylogenetic reconstruction. Its main distinguishing feature is the underlying probabilistic model, CAT (Lartillot and Philippe, 2004). CAT is an infinite mixture model accounting for site-specific amino-acid or nucleotide preferences. It is well suited to phylogenomic studies using large multigene alignments.

View all literature mentions

MUSCLE (tool)

RRID:SCR_011812

Multiple sequence alignment method with reduced time and space complexity.Multiple sequence alignment with high accuracy and high throughput. Data analysis service for multiple sequence comparison by log- expectation.

View all literature mentions

KEGG (tool)

RRID:SCR_012773

Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.

View all literature mentions

NCBI Assembly Archive Viewer (tool)

RRID:SCR_012917

Database providing information on structure of assembled genomes, assembly names and other meta-data, statistical reports, and links to genomic sequence data. The Archive links the raw sequence information found in the Trace Archive with assembly information found in publicly available sequence repositories (GenBank/EMBL/DDBJ).

View all literature mentions