Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Altered Cav1.2 function in the Timothy syndrome mouse model produces ascending serotonergic abnormalities.

The European journal of neuroscience | 2017

Polymorphism in the gene CACNA1C, encoding the pore-forming subunit of Cav1.2 L-type calcium channels, has one of the strongest genetic linkages to schizophrenia, bipolar disorder and major depressive disorder: psychopathologies in which serotonin signaling has been implicated. Additionally, a gain-of-function mutation in CACNA1C is responsible for the neurodevelopmental disorder Timothy syndrome that presents with prominent behavioral features on the autism spectrum. Given an emerging role for serotonin in the etiology of autism spectrum disorders (ASD), we investigate the relationship between Cav1.2 and the ascending serotonin system in the Timothy syndrome type 2 (TS2-neo) mouse, which displays behavioral features consistent with the core triad of ASD. We find that TS2-neo mice exhibit enhanced serotonin tissue content and axon innervation of the dorsal striatum, as well as decreased serotonin turnover in the amygdala. These regionally specific alterations are accompanied by an enhanced active coping response during acute stress (forced swim), serotonin neuron Fos activity in the caudal dorsal raphe, and serotonin type 1A receptor-dependent feedback inhibition of the rostral dorsal raphe nuclei. Collectively, these results suggest that the global gain-of-function Cav1.2 mutation associated with Timothy syndrome has pleiotropic effects on the ascending serotonin system including neuroanatomical changes, regional differences in forebrain serotonin metabolism and feedback regulatory control mechanisms within the dorsal raphe. Altered activity of the ascending serotonin system continues to emerge as a common neural signature across several ASD mouse models, and the capacity for Cav1.2 L-type calcium channels to impact both serotonin structure and function has important implications for several neuropsychiatric conditions.

Pubmed ID: 28921675 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NICHD NIH HHS, United States
    Id: P01 HD036379
  • Agency: NIDA NIH HHS, United States
    Id: R01 DA021801

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Fiji (tool)

RRID:SCR_002285

Software package as distribution of ImageJ and ImageJ2 together with Java, Java3D and plugins organized into coherent menu structure. Used to assist research in life sciences.

View all literature mentions

SlideBook (tool)

RRID:SCR_014423

Digital microscopy software for research microscopy. It comes standard with drivers to control numerous instruments in and around the microscope. When online, data is acquired in a native-3D format over time, color and specimen locations in customizable experiment protocols. Data can be analyzed by a wide variety of tools for image processing including mathematical operations, statistics functions, analysis scripting and import to/export from MATLAB. Additional modules are available for special applications ranging from deconvolution to photomanipulation to multiphoton.

View all literature mentions