Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Collaboration between Distinct Rab Small GTPase Trafficking Circuits Mediates Bacterial Clearance from the Bladder Epithelium.

Cell host & microbe | Sep 13, 2017

Rab small GTPases control membrane trafficking through effectors that recruit downstream mediators such as motor proteins. Subcellular trafficking typically involves multiple Rabs, with each specific step mediated by a distinct Rab protein. We describe a collaboration between two distinct Rab-protein-orchestrated trafficking circuits in bladder epithelial cells (BECs) that expels intracellular uropathogenic Escherichia coli (UPEC) from their intracellular niche. RAB11a and RAB27b and their trafficking circuitry are simultaneously involved in UPEC expulsion. While RAB11a recruits its effector RAB11FIP3 and cytoskeletal motor Dynein, RAB27b mobilizes the effector MyRIP and motor Myosin VIIa to mediate bacterial expulsion. This collaboration is coordinated by deposition of the exocyst complex on bacteria-containing vesicles, an event triggered by the innate receptor Toll-like receptor 4. Both RAB11a and RAB27b are recruited and activated by the exocyst complex components SEC6/SEC15. Thus, the cell autonomous defense system can mobilize and coalesce multiple subcellular trafficking circuitries to combat infections.

Pubmed ID: 28910634 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.