Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Loss of Hyperdirect Pathway Cortico-Subthalamic Inputs Following Degeneration of Midbrain Dopamine Neurons.

Neuron | 2017

The motor symptoms of Parkinson's disease (PD) are linked to abnormally correlated and coherent activity in the cortex and subthalamic nucleus (STN). However, in parkinsonian mice we found that cortico-STN transmission strength had diminished by 50%-75% through loss of axo-dendritic and axo-spinous synapses, was incapable of long-term potentiation, and less effectively patterned STN activity. Optogenetic, chemogenetic, genetic, and pharmacological interrogation suggested that downregulation of cortico-STN transmission in PD mice was triggered by increased striato-pallidal transmission, leading to disinhibition of the STN and increased activation of STN NMDA receptors. Knockdown of STN NMDA receptors, which also suppresses proliferation of GABAergic pallido-STN inputs in PD mice, reduced loss of cortico-STN transmission and patterning and improved motor function. Together, the data suggest that loss of dopamine triggers a maladaptive shift in the balance of synaptic excitation and inhibition in the STN, which contributes to parkinsonian activity and motor dysfunction.

Pubmed ID: 28910619 RIS Download

Additional research tools detected in this publication

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: T32 NS041234
  • Agency: NINDS NIH HHS, United States
    Id: P50 NS047085
  • Agency: NCI NIH HHS, United States
    Id: P30 CA060553
  • Agency: NINDS NIH HHS, United States
    Id: F31 NS090845
  • Agency: NINDS NIH HHS, United States
    Id: R37 NS041280

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Mini Analysis Program (tool)

RRID:SCR_002184

Software tool that detects peaks of any type, any shape, any direction, and any size for neuroscientists who are studying spontaneous activities. Allows detection of virtually any kind of peaks including spontaneous miniature synaptic currents and potentials, action potential spikes, calcium imaging peaks, amperometric peaks, ECG peaks etc. It includes the complex and multiple peak detection algorithm. Has post-detection analyses including essential plots and statistical parameters. Group Analysis provides specialized and detailed analysis options for action potentials, decay fitting, fEPSP/population spikes, amperometry, etc.

View all literature mentions

Anti-Tyrosine Hydroxylase Antibody, clone LNC1 (antibody)

RRID:AB_2201528

This monoclonal targets Tyrosine Hydroxylase

View all literature mentions

Anti-NeuN (antibody)

RRID:AB_2298772

This monoclonal targets NeuN

View all literature mentions

B6.Cg-Tg(Adora2a-Chrm3*.-mCherry)AD6Blr/J (organism)

RRID:IMSR_JAX:017863

Mus musculus with name B6.Cg-Tg(Adora2a-Chrm3*.-mCherry)AD6Blr/J from IMSR.

View all literature mentions

B6.129S4-Grin1tm2Stl/J (organism)

RRID:IMSR_JAX:005246

Mus musculus with name B6.129S4-Grin1tm2Stl/J from IMSR.

View all literature mentions

R Project for Statistical Computing (software resource)

RRID:SCR_001905

Software environment and programming language for statistical computing and graphics. R is integrated suite of software facilities for data manipulation, calculation and graphical display. Can be extended via packages. Some packages are supplied with the R distribution and more are available through CRAN family.It compiles and runs on wide variety of UNIX platforms, Windows and MacOS.

View all literature mentions

GraphPad Prism (software resource)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions

pClamp (software resource)

RRID:SCR_011323

Software suite for electrophysiology data acquisition and analysis by Molecular Devices. Used for the control and recording of voltage clamp, current clamp, and patch clamp experiments. The software suite consists of Clampex 11 Software for data acquisition, AxoScope 11 Software for background recording, Clampfit 11 Software for data analysis, and optional Clampfit Advanced Analysis Module for sophisticated and streamlined analysis.

View all literature mentions

Origin (software resource)

RRID:SCR_014212

Software application for data analysis and graphing. Origin contains a variety of different graph types, including statistical plots, 2D and 3D vector graphs, and counter graphs. More advance version is OriginPro which offers advanced analysis tools and Apps for Peak Fitting, Surface Fitting, Statistics and Signal Processing.

View all literature mentions

ImageJ (software resource)

RRID:SCR_003070

Open source Java based image processing software program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

View all literature mentions

Neurolucida (software resource)

RRID:SCR_001775

Neurolucida is advanced scientific software for brain mapping, neuron reconstruction, anatomical mapping, and morphometry. Since its debut more than 20 years ago, Neurolucida has continued to evolve and has become the worldwide gold-standard for neuron reconstruction and 3D mapping. Neurolucida has the flexibility to handle data in many formats: using live images from digital or video cameras; stored image sets from confocal microscopes, electron microscopes, and scanning tomographic sources, or through the microscope oculars using the patented LucividTM. Neurolucida controls a motorized XYZ stage for integrated navigation through tissue sections, allowing for sophisticated analysis from many fields-of-view. Neurolucidas Serial Section Manager integrates unlimited sections into a single data file, maintaining each section in aligned 3D space for full quantitative analysis. Neurolucidas neuron tracing capabilities include 3D measurement and reconstruction of branching processes. Neurolucida also features sophisticated tools for mapping delineate and map anatomical regions for detailed morphometric analyses. Neurolucida uses advanced computer-controlled microscopy techniques to obtain accurate results and speed your work. Plug-in modules are available for confocal and MRI analysis, 3D solid modeling, and virtual slide creation. The user-friendly interface gives you rapid results, allowing you to acquire data and capture the full 3D extent of neurons and brain regions. You can reconstruct neurons or create 3D serial reconstructions directly from slides or acquired images, and Neurolucida offers full microscope control for brightfield, fluorescent, and confocal microscopes. Its added compatibility with 64-bit Microsoft Vista enables reconstructions with even larger images, image stacks, and virtual slides. Adding the Solid Modeling Module allows you to rotate and view your reconstructions in real time. Neurolucida is available in two separate versions Standard and Workstation. The Standard version enables control of microscope hardware, whereas the Workstation version is used for offline analysis away from the microscope. Neurolucida provides quantitative analysis with results presented in graphical or spreadsheet format exportable to Microsoft Excel. Overall, features include: - Tracing Neurons - Anatomical Mapping - Image Processing and Analysis Features - Editing - Morphometric Analysis - Hardware Integration - Cell Analysis - Visualization Features Sponsors: Neurolucida is supported by MBF Bioscience.

View all literature mentions

Mini Analysis Program (software resource)

RRID:SCR_014441

Software tool that detects peaks of any type, any shape, any direction, and any size for neuroscientists who are studying spontaneous activities. Allows detection of virtually any kind of peaks including spontaneous miniature synaptic currents and potentials, action potential spikes, calcium imaging peaks, amperometric peaks, ECG peaks etc. It includes the complex and multiple peak detection algorithm. Has post-detection analyses including essential plots and statistical parameters. Group Analysis provides specialized and detailed analysis options for action potentials, decay fitting, fEPSP/population spikes, amperometry, etc.

View all literature mentions

IGOR Pro (software resource)

RRID:SCR_000325

Software used for visualizing and graphing data, image processing, and programming. It is designed for use by scientists and engineers and supports large data sets, evenly spaced data, and various data import formats. The software includes a suite of image processing operations for image filtering, manipulation, and quantification and is completely programmable.

View all literature mentions

B6.Cg-Tg(Adora2a-Chrm3*.-mCherry)AD6Blr/J (organism)

RRID:IMSR_JAX:017863

Mus musculus with name B6.Cg-Tg(Adora2a-Chrm3*.-mCherry)AD6Blr/J from IMSR.

View all literature mentions

B6.129S4-Grin1tm2Stl/J (organism)

RRID:IMSR_JAX:005246

Mus musculus with name B6.129S4-Grin1tm2Stl/J from IMSR.

View all literature mentions

B6.129S4-Grin1tm2Stl/J (organism)

RRID:IMSR_JAX:005246

Mus musculus with name B6.129S4-Grin1tm2Stl/J from IMSR.

View all literature mentions

B6.Cg-Tg(Adora2a-Chrm3*.-mCherry)AD6Blr/J (organism)

RRID:IMSR_JAX:017863

Mus musculus with name B6.Cg-Tg(Adora2a-Chrm3*.-mCherry)AD6Blr/J from IMSR.

View all literature mentions