Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Crucial role for T cell-intrinsic IL-18R-MyD88 signaling in cognate immune response to intracellular parasite infection.

eLife | Sep 12, 2017

MyD88 is the main adaptor molecule for TLR and IL-1R family members. Here, we demonstrated that T-cell intrinsic MyD88 signaling is required for proliferation, protection from apoptosis and expression of activation/memory genes during infection with the intracellular parasite Trypanosoma cruzi, as evidenced by transcriptome and cytometry analyses in mixed bone-marrow (BM) chimeras. The lack of direct IL-18R signaling in T cells, but not of IL-1R, phenocopied the absence of the MyD88 pathway, indicating that IL-18R is a critical MyD88-upstream pathway involved in the establishment of the Th1 response against an in vivo infection, a presently controvert subject. Accordingly, Il18r1-/- mice display lower levels of Th1 cells and are highly susceptible to infection, but can be rescued from mortality by the adoptive transfer of WT CD4+ T cells. Our findings establish the T-cell intrinsic IL-18R/MyD88 pathway as a crucial element for induction of cognate Th1 responses against an important human pathogen.

Pubmed ID: 28895840 RIS Download

Research resources used in this publication

Data used in this publication

None found

Associated grants


Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Commercial antibody supplier and developer for biomedical research. These products are compatible with use in flow cytometry and mass cytometry, immunoprecipitation and chip, western blotting, immunofluorescence microscopy, and quantitative multiplexing.


View all literature mentions

Plant enzymes and biochemical pathways database

The Plant Metabolic Network (PMN) is a collaborative project among databases and biochemists with a common goal to build a broad network of plant metabolic pathway databases. A central feature of the PMN is PlantCyc, a comprehensive plant biochemical pathway database, containing curated information from the literature and computational analyses about the genes, enzymes, compounds, reactions, and pathways involved in primary and secondary metabolism. The central goal of the Plant Metabolic Network (PMN) is to bring together biochemical pathway databases and research communities focused on plant metabolism. PMN will generate an infrastructure for drawing together diverse sources of plant metabolism information.


View all literature mentions

BioCarta Pathways

BioCarta Pathways allows users to observe how genes interact in dynamic graphical models. Online maps available within this resource depict molecular relationships from areas of active research. In an open source approach, this community-fed forum constantly integrates emerging proteomic information from the scientific community. It also catalogs and summarizes important resources providing information for over 120,000 genes from multiple species. Find both classical pathways as well as current suggestions for new pathways.


View all literature mentions


Open-source, open access, manually curated and peer-reviewed pathway database with pathway annotations authored by expert biologists, in collaboration with Reactome editorial staff, and cross-referenced to many bioinformatics databases including NCBI Entrez Gene, Ensembl and UniProt databases, the UCSC and HapMap Genome Browsers, the KEGG Compound and ChEBI small molecule databases, PubMed, and Gene Ontology. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways. Examples of biological pathways in Reactome include signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism. Reactome provides an intuitive website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets. A tool that allows the comparison of pathways between human and any of the other species inferred from Reactome by orthology is included. Visualization of Reactome data is facilitated by the Pathway Browser, a Systems Biology Graphical Notation (SBGN)-based interface, that supports zooming, scrolling and event highlighting. It exploits the PSIQUIC web services to overlay molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, ChEMBL, BioGRID and iRefIndex. The whole content of the Reactome can be downloaded as a MySQL database dump. A SOAP based Web Services API is also available to access the Reactome data. Additionally, the complete Reactome textbook of biological pathways and processes can be downloaded.


View all literature mentions