Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Prosapip1-Dependent Synaptic Adaptations in the Nucleus Accumbens Drive Alcohol Intake, Seeking, and Reward.

Neuron | Sep 27, 2017

The mammalian target of rapamycin complex 1 (mTORC1), a transducer of local dendritic translation, participates in learning and memory processes as well as in mechanisms underlying alcohol-drinking behaviors. Using an unbiased RNA-seq approach, we identified Prosapip1 as a novel downstream target of mTORC1 whose translation and consequent synaptic protein expression are increased in the nucleus accumbens (NAc) of mice excessively consuming alcohol. We demonstrate that alcohol-dependent increases in Prosapip1 levels promote the formation of actin filaments, leading to changes in dendritic spine morphology of NAc medium spiny neurons (MSNs). We further demonstrate that Prosapip1 is required for alcohol-dependent synaptic localization of GluA2 lacking AMPA receptors in NAc shell MSNs. Finally, we present data implicating Prosapip1 in mechanisms underlying alcohol self-administration and reward. Together, these data suggest that Prosapip1 in the NAc is a molecular transducer of structural and synaptic alterations that drive and/or maintain excessive alcohol use.

Pubmed ID: 28890345 RIS Download

Mesh terms: Actin Cytoskeleton | Alcohol Drinking | Animals | Carrier Proteins | Dendritic Spines | Drug-Seeking Behavior | Ethanol | Male | Membrane Proteins | Mice | Multiprotein Complexes | Neuronal Plasticity | Nucleus Accumbens | Receptors, AMPA | Reward | Self Administration | TOR Serine-Threonine Kinases

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ImageJ

A Java image processing program which can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-bit images. It can read many image formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and raw. It runs, either as an online applet or as a downloadable application, on any computer with a Java 1.4 or later virtual machine. Downloadable distributions are available for Windows, Mac OS, Mac OS X and Linux. It supports stacks, a series of images that share a single window. It is multithreaded, so time-consuming operations such as image file reading can be performed in parallel with other operations. It can calculate area and pixel value statistics of user-defined selections. It can measure distances and angles. It can create density histograms and line profile plots. It supports standard image processing functions such as contrast manipulation, sharpening, smoothing, edge detection and median filtering. It does geometric transformations such as scaling, rotation and flips. Image can be zoomed up to 32:1 and down to 1:32. All analysis and processing functions are available at any magnification factor. The program supports any number of windows (images) simultaneously, limited only by available memory. Spatial calibration is available to provide real world dimensional measurements in units such as millimeters. Density or gray scale calibration is also available. ImageJ was designed with an open architecture that provides extensibility via Java plugins. Custom acquisition, analysis and processing plugins can be developed using ImageJ built in editor and Java compiler. User-written plugins make it possible to solve almost any image processing or analysis problem.

tool

View all literature mentions

AutoQuant

Advanced image deconvolution and 3D visualization software for Life Science Researchers.

tool

View all literature mentions

TopHat

A fast splice junction mapper for RNA-Seq reads.

tool

View all literature mentions