Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Modulation of hippocampal synapse maturation by activity-regulated E3 ligase via non-canonical pathway.

Neuroscience | 2017

Development of functional synapses is crucial for the transmission and storage of information in the brain. Post establishment of the initial synaptic contact, synapses are stabilized through neuronal activity-induced signals. Emerging studies have implicated ubiquitination; a reversible posttranslational modification, as a key regulatory switch that modulates synapse development through proteasomal degradation. Ubiquitination of proteins is precisely regulated by E3 ligases, a set of enzymes that bind to specific substrates to facilitate the conjugation of monomeric or polymeric ubiquitin. However, the identity of specific E3 ubiquitin ligases that influence activity-dependent maturation of synapses and the mechanism by which ubiquitination of proteins regulate functional synapse development remain elusive. Here, we have identified a RING domain containing E3 ligase, Rnf2, asan activity-regulated factor that modulates glutamatergic synapse development in the hippocampus. Rnf2 is a synapse associated E3 ligase that is stabilized by neuronal activity through self-polyubiquitination. We have shown that neuronal activity shifts the balance toward stabilization of Rnf2 through self-polyubiquitination rather than triggering its degradation through polyubiquitination by Ube3A, an E3 ligase implicated in Angelman Syndrome. Our synapse density measurements and whole-cell patch-clamp recordings have revealed that the loss of Rnf2 function in cultured hippocampal neurons result in the development of 'silent' synapses that lack GluA1 containing functional AMPA receptors. These results provide a plausible mechanistic approach toward understanding how synapse maturation is regulated via the activity-dependent stabilization of Rnf2 through a non-canonical function of polyubiquitination.

Pubmed ID: 28890050 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NeuronStudio (tool)

RRID:SCR_013798

A software application which allows reconstruction of neuronal structures from confocal and multi-photon images. NeuronStudio provides tools for manual, semi-manual, and automatic tracing of the dendritic arbor, as well as manual and automatic detection and classification of dendritic spines. Advanced 2D and 3D visualization techniques facilitate the verification of the reconstruction, as well as allowing accurate manual editing. The most current version is Version 0.9.92 which was last updated on November 19, 2009.

View all literature mentions