Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

NF-κB Activation Protects Oligodendrocytes against Inflammation.

The Journal of neuroscience : the official journal of the Society for Neuroscience | 2017

NF-κB is a key player in inflammatory diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the effects of NF-κB activation on oligodendrocytes in MS and EAE remain unknown. We generated a mouse model that expresses IκBαΔN, a super-suppressor of NF-κB, specifically in oligodendrocytes and demonstrated that IκBαΔN expression had no effect on oligodendrocytes under normal conditions (both sexes). Interestingly, we showed that oligodendrocyte-specific expression of IκBαΔN blocked NF-κB activation in oligodendrocytes and resulted in exacerbated oligodendrocyte death and hypomyelination in young, developing mice that express IFN-γ ectopically in the CNS (both sexes). We also showed that NF-κB inactivation in oligodendrocytes aggravated IFN-γ-induced remyelinating oligodendrocyte death and remyelination failure in the cuprizone model (male mice). Moreover, we found that NF-κB inactivation in oligodendrocytes increased the susceptibility of mice to EAE (female mice). These findings imply the cytoprotective effects of NF-κB activation on oligodendrocytes in MS and EAE.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. NF-κB is a major player in inflammatory diseases that acts by regulating inflammation and cell viability. Data indicate that NF-κB activation in inflammatory cells facilitates the development of MS. However, to date, attempts to understand the role of NF-κB activation in oligodendrocytes in MS have been unsuccessful. Herein, we generated a mouse model that allows for inactivation of NF-κB specifically in oligodendrocytes and then used this model to determine the precise role of NF-κB activation in oligodendrocytes in models of MS. The results presented in this study represent the first demonstration that NF-κB activation acts cell autonomously to protect oligodendrocytes against inflammation in animal models of MS.

Pubmed ID: 28842413 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-CD11b, clone M1/70.15.1 (antibody)

RRID:AB_92930

This monoclonal targets CD11b clone M1/70.15.1

View all literature mentions

Myelin Basic Protein (SMI 99) Monoclonal Antibody, Purified (antibody)

RRID:AB_10120129

This monoclonal targets Myelin Basic Protein (SMI 99) Purified

View all literature mentions

Anti-Actin, N-terminal antibody produced in rabbit (antibody)

RRID:AB_476694

This polyclonal targets Actin N-terminal antibody produced in rabbit

View all literature mentions

GraphPad Prism (software resource)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions